Die Mathe-Redaktion - 21.08.2014 14:07
Auswahl
Aktion im Forum
Suche
Stichwortsuche in Artikeln und Links von Matheplanet
Suchen im Forum
Suchtipps

Bücher
Englische Bücher
Software
Suchbegriffe:
Mathematik bei amazon
Naturwissenschaft & Technik
In Partnerschaft mit Amazon.de
Kontakt
Mail an Matroid
[Keine Übungsaufgaben!]
Impressum

Bitte beachten Sie unsere Nutzungsbedingungen, die Distanzierung, unsere Datenschutzerklärung und
die Forumregeln.

Sie können Mitglied werden oder den Newsletter bestellen.

Der Newsletter August 2014

Für Mitglieder
Mathematisch für Anfänger
Wer ist Online
Aktuell sind 431 Gäste und 38 Mitglieder online.

Sie können Mitglied werden:
Klick hier.

Über Matheplanet
 
 Notizbuch der Arbeitsgruppe Alexandria
Logo der Arbeitsgruppe AlexandriaAlexandriaAKTIV
Arbeitsgruppe Alexandria auf dem Matheplaneten
Schaffung und fortlaufende Pflege des Stichwortkatalogs für die Artikel auf dem Matheplaneten.

Kontakt:
matroid
  Alle Register zeigen, die initial gezeigt werden sollen  5 25 56 123 52 91 27 10 89 18 44 24 14 245 114 80     [RegView] [Hilfe] Nur Einträge mit Dateianlage zeigen, aus allen Registern Öffentliche Register aller Notizbücher Übersicht aller Arbeitsgruppen  Zum eigenen Notizbuch   Suchen im Notizbuch
Aufsteigend nach laufender Nummer01Absteigend nach laufender Nummer  Aufsteigend nach NamenAZAbsteigend nach Namen  Aufsteigend nach Datum der NotizDDAbsteigend nach Datum der Notiz
Einträge zum Stichwort Geometrie

Gegeben zwei sich nicht berührende Kreise K1, K2 mit den Mittelpunkten M1, M2 und den Radien r1, r2. Schlage um den Mittelpunkt der Strecke M1M2 einen Halbkreis durch M1. Schlage um M2 einen Kreisbogen mit dem Radius r2-r1, der den Halbkreis im Punkt P schneide. Verlängere die Strecke M2P so, daß s
Zu zwei sich berührenden Kreisen K1, K2, deren Mittelpunkte und Radien gegeben sind, soll mit Zirkel und Lineal eine gemeinsame Tangente t konstruiert werden. Dann soll ein dritter Kreis K konstruiert werden, der t und die beiden Kreise berührt. (Wen 's interessiert - Lösungsansatz für den zweite
In einem normalen Koordinatensystem werden auf der positiven x-Achse der Punkt F und auf der positiven y-Achse der Punkt Q abgetragen. Der Mittelpunkt der Strecke QF sei M. Die Senkrechte durch QF bei M schneidet den Kreis K, dessen Mittelpunkt M und dessen Radius MQ ist, in 2 Punkten, P+ und P-. Wie lauten die Gleichungen der Ortskurven dieser Punkte?
Die Aufgabe ist schon UUhralt. Es kann ja nicht sein, was man sieht! Hmm, ich muß überlegen ...
Es wird ein Quadrat ABCD konstruiert, das dann so in n Rechtecke geteilt wird, dass diese Rechtecke alle kongruent sind und die Rechteckseiten, die man einzeichnen muss, parallel zu AB sind.
Jetzt wird die Diagonale AC eingezeichnet. In die Rechtecke wird jeweils die fallende Diagonale eingezeichnet und von den Schnittpunkten dieser Diagonalen und AC die Lote auf AB gefällt.
Behauptung: Diese Lote teilen AB in n+1 gleiche Teile.
Man hat folgende Teppichstücke: 5 blaue Stücke zu 1m x 1m und sechs gelbe zu 50cm x 200cm; ergibt zusammen 11 Quadratmeter, und genau so groß ist das Zimmer. Ihr fangt an zu verlegen, und - o Wunder! - es geht alles glatt auf, und kein Schnitt muß getan werden, bis ... bis ihr beim letzten Stück seid. Es sind noch genau 50x200 frei, aber ihr habt noch ein blaues Stück der Größe 100x100 übrig.

Könnt ihr durch Umordnen bzw. Neuverlegen erreichen, daß es genau aufgeht?
Zerlege [von matroid] Druckerfreundliche Ansicht (matroid/Gockel)
Die nebenstehende Fläche soll in 2 kongruente (deckungsgleiche) Stücke zerlegt werden.
Gegeben sei das Quadrat ABCD mit der Seitenlänge a. Dem Quadrat wird ein gleichseitiges Dreieck BEF so einbeschrieben, daß eine Ecke mit Punkt B zusammenfällt und die beiden anderen Ecken sich auf den Seiten AD und CD befinden.
Einem Kreis mit dem Radius 2 werden 2 Einheitskreise eingeschrieben. Nun werden fortwährend zwischen dem unteren rechten Kreisbogen und dem rechten Einheitskreis neue Kreise eingeschrieben. 1) Der wievielte blaue Kreis hat eine Fläche, die kleiner als 1/100.000 ist?2) Auf welcher Ortskurve lie
Sei P ein beliebiger Punkt auf dem Einheitskreis. Dessen Projektion auf die y-Achse sei Q. Die Mittelsenkrechte durch QS mit S=(1,0) schneidet den Einheitskreis in T+ und T-. Der Mittelpunkt von T+S sei N+, der von T-S sei N-.
Durch welche Relationen R(x,y) werden die Ortskurven von N+, N-, von deren Mittelpunkt M sowie vom Mittelpunkt T von T+ und T- beschrieben?
Man zeichne einen Kreis, dessen Durchmesser größer als 2 ist. Nun markiert man eine Sekante der Länge zwei zwischen den Punkten A und B.
Jetzt folgt der Innenkreis so, dass dessen Umfang die gerade gezeichnete Strecke berührt.

1) Mit welcher Überlegung kann man nun bereits die Kreisringfläche angeben?
2) Wie kann man es mathematisch herleiten?
Zwei Punkte mit ganzzahligen rechtwinkligen Koordinaten liegen auf einem Viertelkreis um den Ursprung mit ebenfalls ganzzahligem Radius. Ihr Abstand voneinander beträgt 80 Längeneinheiten. Wie groß ist der Radius des Viertelkreises?

Aufgabe [von Anonymous] Druckerfreundliche Ansicht (matroid/Gockel)
Hallo, mein Name ist Thomas. Ich bekam letztens im Mathematikunterricht eine schwierige  gestellt. Ich sollte ein rechtwinkliges Dreieck konstruieren (ohne zu rechnen), von dem nur die Bestimmungsstücke a und q gegeben waren, also eine Kathete und der nicht zugehörige Hypotenusenabschnitt.
Wie tief taucht ein Holzkegel (Grundkreisradius r, Höhe h) mit der Spitze nach unten in Wasser ein, wenn seine Dichte 0,8kg/dm³ beträgt? Drücke die Eintauchtiefe angenähert als Bruchteil der Kegelhöhe aus!
Ich arbeite als Informatik-Projektleiter in einem Stahl-Unternehmen. Meine Arbeit ist nicht mathematisch. Meine Kollegen sind Ingenieure, Informatiker oder Betriebswirte. Manchmal treffe ich bei meiner Tätigkeit auf ein mathematisches Problem. Hier ist eines. Es geht um Coils und deren Gewichte.
Eine Badewanne lässt sich in 20 Minuten füllen. Durch den Abfluss fließt diese Wassermenge in 30 Minuten wieder ab. Wie lange dauert es, bis die leere Badewanne gefüllt ist, wenn Zu- und Abfluss gleichzeitig geöffnet sind? Solche Aufgaben sind gefürchtet. Die algebraische Lösung für die gesuchte
In der Geometrie und Philosophie der alten Griechen spielten die 5 platonischen Körper eine bedeutende Rolle. Sie galten als die perfekten geometrischen Körper: Das Tetraeder mit 4 Flächen, 4 Ecken und 6 Kanten:  
Nachdem ich jetzt auch schon eine ganze Zeit dabei bin, dachte ich mir, dass es jetzt auch Mal an der Zeit wäre, einen Artikel beizusteuern. Da das Semester ja grad' dem Ende entgegen geht und ich nicht die Zeit habe jetzt etwas ausgereiftes zu schreiben, werde ich euch erst Mal etwas anbieten, was
In diesem Artikel werde ich zeigen wie man mittels Origami beliebige Winkel dreiteilen kann und einen interessanten Satz beweisen. Die Kunst des Origami wird uns dabei helfen, denn alles was wir im folgenden brauchen werden ist ein quadratisches Blatt Pa
Dieser Artikel soll der erste Teil einer kleinen Serie sein. Es geht um die Sätze von Ceva und Menelaus, deren Umkehrungen und um den erweiterten Sinussatz.

In diesem Artikel wird das Ziegenproblem genauer untersucht. Die Aufgabenstellung: Ein Bauer habe eine quadratische bzw. runde Wiese und eine Ziege. Die Ziege sei in der Mitte einer Wiesenseite mit einer Leine angebunden. Die Frage ist nun, wie lang die Leine sein muss, damit die Ziege gena
Klassifikation der meisten endlichdimensionalen, symplektischen/unitären/orthogonalen Räume über endlichen Körpern. Es wird außerdem die Gruppenordnung der jeweiligen Isometriegruppen hergeleitet.

Das regelmäßige Siebzehneck und seine Konstruierbarkeit (mit Konstruktionsanleitung)

Beim munteren Beisammensein in Wirtshäusern spielen Studenten der Mathematik gern das folgende Spiel: An einem rechteckigen Tisch sitzen zwei Spieler, die abwcheselnd einen runden  auf den Tisch legen, und zwar so, dass alle Deckel ganz auf dem Tisch liegen und sich nicht überlappen. Wenn

Ein Pythagorasbaum entsteht, wenn man auf ein Quadrat (Stamm) ein rechtwinkliges Dreieck (Verzweigung) mit seiner Hypotenuse aufsetzt. An die Katheten schließen sich wieder Quadrate (Zweige) an, an deren gegenüberliegenden Seiten sich wiederum rechtwinklige Dreiecke
Hier sollen die allgemein bekannten Formeln für Oberfläche und Volumen der genannten Körper hergeleitet werden.
Friedrich stellt vor, wie man eine triviale Gleichung zu einem hochinteressanten geometrischen Beweis verarbeiten kann
"Auf jeden Fall ist es für mich immer noch seltsam, dass man das Dreieck ABC mit den wenigen Angaben eindeutig berechnen kann, obwohl man es erst nicht glauben mag."
Über das Parallelenaxiom, ein historischer Streifzug von Euklid über Wallis, Legendre bis Bólyai Im folgenden möchte ich einiges über das sogenannte Parallelenaxiom berichten, das nicht jeder in dieser Ausführlichkeit kennt. Bekanntlich geht es auf Euklid (um 300 v. Chr.) zurück, doch erscheint es dort nicht unter diesem Namen.
Im folgenden habe ich einiges über die Parabel zusammengetragen, darunter Bekanntes und weniger Bekanntes, vielleicht zum Teil sogar Neues. Sie ist eine ebene, nicht geschlossene Kurve, die zusammen mit der Ellipse und Hyperbel zu den Kegelschnitten gehört.
In diesem Teil wird es um zwei ganz bestimmte Sätze gehen: Um den Satz von Stewart und um den Satz von Steiner und Lehmus. Und zwar um deren Sätze, Beweise und Anwendungen Der Satz von Stewart eignet sich zum Beispiel sehr gut, um Längen ganz bestimmter Strecken am Dreieck zu berechnen.
In diesem kleinen Exkurs werden Grundbegriffe wie Seitenhalbierende, Höhe, Mittelsenkrechte und Winkelhalbierende erklärt und in diesem Zusammenhang wird auf Schnittpunkte eingangen wie auf den Schwerpunkt, Höhenschnittpunkt, Umkreismittelpunkt und Inkreismittelpunkt. Des Weiteren werden interessante Sätze im Kontext dieser "merkwürdigen" Punkte und Geraden erläutert.

Der Satz des Pythagoras wird schon in der Schule vermittelt und es gibt fast niemanden der ihn nicht kennt. Vielleicht hat man sich auch schon gefragt, ob es nicht vielleicht ein Analogon im Dreidimensionalen gibt. Dieser kleine Artikel soll diese Frage beantworten
Bewegt sich bei der konformen Abbildung w=1/z (z=x+iy, w=u+iv) der  Originalpunkt in der z-Ebene auf einem Kreis, der nicht durch den Ursprung geht, so trifft das bekanntlich auch für den Bildpunkt in der w-Ebene zu. Man  spricht deshalb
Ein Auto hat an Stelle der normalen, kreisrunden Reifen quadratische Würfelreifen verpaßt bekommen. Wie muß die Straße dafür aussehen, daß es nicht rumpelt?
Kombinatorische Geometrie [von hansibal] Druckerfreundliche Ansicht (matroid/Kleine_Meerjungfrau)
Gibt es für jede beliebige Dimension d und jede natürliche Zahl x einen Quader in jener Dimension, dass die Anzahl der Kästchen, die an einer oder mehrerer Kante(n) liegen, gleich 1/x der Gesamtkästchen ist? Wenn ja, wie müssen die Abmessungen gewählt werden?
Manchmal erwischt einen die Mathematik im unpassendsten Moment. Da sitzt man völlig arglos mit seiner Familie an einem sonnigen Tag draußen am Teetisch und freut sich des Lebens. Wie durch Zufall fällt der Blick in die Teetasse - und es ist um die Harmonie
Die Einführung des Euro als alleiniges, gemeinsames Zahlungsmittel in 12 europäischen Ländern am 1.1.2002 ist beschlossen.
Aus mathematischer Sicht ergeben sich zwei Fragestellungen: Wie konstruiert man ein Euro-Zeichen?
Welche Faustregel kann man für die Umrechnung Euro in DM anwenden?

Eine Buch- und Linkempfehlung zu Eckards Buch "geometria - scientiae atlantis"
In die dynamische Raumgeometrie unter Verwendung des Programmes Archimedes Geo3D wird anhand eines typischen Beispiels eingeführt.
In den vergangenen Monaten wurde von FlorianM in verschiedenen Artikeln viel über die Eigenschaften von Dreiecken berichtet. Die folgende kurze Betrachtung soll daran anschließen.
Artikel über die Simson - Gerade und den Satz von Ptolemeaus. Der 6. Teil der Serie "Vergessene Sätze am Dreieck."
Was ist eine Kurve? Wie ist sie definiert? Was ist eine Parametrisierung? Was versteht man darunter, wenn eine Kurve nach Bogenlänge parametrisiert ist? All diese Fragen und noch viele mehr werden in diesem Artikel beantwortet.
Zur Filmreihe 'Geschichte der Mathematik' von Marcus du Sautoy Die Filme sind für alle, die die Mathematik nur von den vertrackten Rechnungen in der Schule kennen, eine echte Offenbarung, besonders die mittelalterlichen Leistungen in den Ländern des Ostens und die Persönlichkeiten im modernen Tei
Auf der Seite www.bookofproofs.org gibt es ein offenes, englischsprachiges Internetprojekt. Wenn Ihr Lust habt, könnt Ihr bei diesem Unterfangen mitmachen. Es geht darum, die Theorie der Mathematik, der theoretischen Informatik und der theoretischen Physik aus einfachen Axiomen herzuleiten und systematisch auszubauen, Beweisführung, Beispielanwendungen und geschichtliche Entwicklung eingeschlossen.

In diesem Artikel möchte ich einen kleinen Überblick über Voronoi-Diagramme geben. Ich beschränke mich nicht auf das in Vorlesungen übliche klassische Voronoi-Diagramm, sondern erläutere auch das Voronoi-Diagramm von Liniensegmenten. Desweiteren gehe ich auf einige Anwendungen in der Informatik ein.

--- 48 Einträge Druckansicht der Liste ---

Heute, Gestern, vor 2 oder 3 Tagen geändert

 

 

 

Notizbuch der Arbeitsgruppe Alexandria


 
All logos and trademarks in this site are property of their respective owner. The comments are property of their posters, all the rest © 2001-2014 by Matroids Matheplanet
This web site was made with PHP-Nuke, a web portal system written in PHP. PHP-Nuke is Free Software released under the GNU/GPL license.
Ich distanziere mich von rechtswidrigen oder anstößigen Inhalten, die sich trotz aufmerksamer Prüfung hinter hier verwendeten Links verbergen mögen.
Lesen Sie die Nutzungsbedingungen, die Distanzierung, die Datenschutzerklärung und das Impressum.
[Seitenanfang]