Die Mathe-Redaktion - 02.10.2014 16:27
Auswahl
Aktion im Forum
Suche
Stichwortsuche in Artikeln und Links von Matheplanet
Suchen im Forum
Suchtipps

Bücher
Englische Bücher
Software
Suchbegriffe:
Mathematik bei amazon
Naturwissenschaft & Technik
In Partnerschaft mit Amazon.de
Kontakt
Mail an Matroid
[Keine Übungsaufgaben!]
Impressum

Bitte beachten Sie unsere Nutzungsbedingungen, die Distanzierung, unsere Datenschutzerklärung und
die Forumregeln.

Sie können Mitglied werden oder den Newsletter bestellen.

Der Newsletter August 2014

Für Mitglieder
Mathematisch für Anfänger
Wer ist Online
Aktuell sind 398 Gäste und 42 Mitglieder online.

Sie können Mitglied werden:
Klick hier.

Über Matheplanet
 
 Notizbuch der Arbeitsgruppe Alexandria
Logo der Arbeitsgruppe AlexandriaAlexandriaAKTIV
Arbeitsgruppe Alexandria auf dem Matheplaneten
Schaffung und fortlaufende Pflege des Stichwortkatalogs für die Artikel auf dem Matheplaneten.

Kontakt:
matroid
  Alle Register zeigen, die initial gezeigt werden sollen  5 25 56 123 52 91 27 10 89 18 43 24 14 251 114 80     [RegView] [Hilfe] Nur Einträge mit Dateianlage zeigen, aus allen Registern Öffentliche Register aller Notizbücher Übersicht aller Arbeitsgruppen  Zum eigenen Notizbuch   Suchen im Notizbuch
Aufsteigend nach laufender Nummer01Absteigend nach laufender Nummer  Aufsteigend nach NamenAZAbsteigend nach Namen  Aufsteigend nach Datum der NotizDDAbsteigend nach Datum der Notiz
Einträge zum Stichwort Sonstige Mathematik

Ist euch schon mal aufgefallen, dass 26 genau zwischen 5*5=25  und 3*3*3=27 liegt. Sie liegt somit zwischen einer Quadrat- und einer Kubikzahl. Meine Frage ist nun,ob dies die einzige Zahl ist, die diese Eigenschaft erfüllt. Ansonsten würde mich interessieren, wieviele ...

Ein humorvoller Artikel über das Finden maximaler Matchings.
Approximation der Kurve y=x3+ax2+bx+c durch die kubische Parabel y=x3, die durch die Startnäherung xn auf der x-Achse verschoben wird,
Eine Einführung in Simulink
Bewegt sich bei der konformen Abbildung w=1/z (z=x+iy, w=u+iv) der  Originalpunkt in der z-Ebene auf einem Kreis, der nicht durch den Ursprung geht, so trifft das bekanntlich auch für den Bildpunkt in der w-Ebene zu. Man  spricht deshalb
Die Abstände eines variablen Punktes P der Ebene von zwei festen Punkten F1 und F2 spielen in der Geometrie eine nicht geringe Rolle. Ist ihre Summe konstant, entsteht bekanntlich eine Ellipse, bleibt ihre Differenz unverändert, eine Hyperbel. Was sich ergibt, wenn das Verh
Was ist Perkolation (engl. percolation)? Sickern einer Flüssigkeit durch ein ungesättigtes, poröses Medium, z.B. Wasser im Boden unter dem Einfluß der Gravitation. Langsame Bewegung von Wasser in einem porösen Medium. Wasserverlust eines Kanales oder eines anderen Gewässers durch Versi ...
Mit den Methoden der Wahrscheinlichkeitsrechnung lernt man Chancen zu bewerten. Die Wahrscheinlichkeit für eine 6 beim Würfeln ist 1/6. Die Chance für 6 Richtige im Lotto beträgt 1:13983816. Die Wahrscheinlichkeit ist in diesen Fällen der Quotient aus günstigen Ergebnissen und möglichen Ergebnisse
In letzter Zeit habe ich mich eingehend mit Gleichungen 3. Grades beschäftigt. Dabei hatte ich die Idee für folgendes Näherungsverfahren: Der Grundgedanke des Verfahrens besteht in der lokalen Approximation der Kurve y = x³ + ax + b durch die kubische Parabel y = x³, die durch y = (x - x[n])³ auf
Der Eulersche Polyedersatz, zur Erinnerung: e+f-k=2, sieht so einfach zu handhaben aus, aber schon bei der Anwendung auf ein Dreieck scheint man zu versagen: 3 Ecken, 3 Kanten, 1 Fläche ergibt hartnäckig: 3+1-3=1 und nicht 2. Die unten angegebene Figur 1 wird oft zum Beweis des Sat
Wer möchte seinem Computer nicht mal alle Fehler und Abstürze heimzahlen? Eine effektive Methode ist, ihn mit der Suche nach Primzahlzwillingen zu quälen. Die Voraussetzung dafür ist ein Primzahlen-Testprogramm, wie es beispielsweise MAPLE zur Verfügung stellt. Solche Tests gibt es heute sogar auf
Nachdem Sie im November 2001 einen Link auf meine Delphi-Ecke setzten (Sparte Umwandlung eine Dezimalzahl in eine Dualzahl) erlaube ich mir, Sie auf weitere Themen, die in Newsgroups häufig angesprochen werden und für die ich Erläuterungen gegeben habe, hinzuweisen: Der erweiterte euklidische Algo
Angeregt durch den Thread "Die Münzsammlung" in der Knobelecke hier eine verallgemeinerte Formulierung und Lösung.
Der gesamte Algorithmus muss 5 mal durchlaufen werden, bis alle Münzen so verteilt sind, dass jedes Kind von jedem Wert und aus jedem Land genau eine Münze besitzt.
Ein Auto hat an Stelle der normalen, kreisrunden Reifen quadratische Würfelreifen verpaßt bekommen. Wie muß die Straße dafür aussehen, daß es nicht rumpelt?
Kombinatorische Geometrie [von hansibal] Druckerfreundliche Ansicht (matroid/Kleine_Meerjungfrau)
Gibt es für jede beliebige Dimension d und jede natürliche Zahl x einen Quader in jener Dimension, dass die Anzahl der Kästchen, die an einer oder mehrerer Kante(n) liegen, gleich 1/x der Gesamtkästchen ist? Wenn ja, wie müssen die Abmessungen gewählt werden?
Dies ist der dritte Beitrag des Sommerausflugs in die Kombinatorik. Die früheren Teile waren: 1. Teil: Begriffe, Defintionen, 2. Teil: Rekursive Ansätze
Heutiges Ziel: Ansatz mittels Erzeugender Funktion und Anwendung in einem selbstgeschriebenen Programm.
Manchmal erwischt einen die Mathematik im unpassendsten Moment. Da sitzt man völlig arglos mit seiner Familie an einem sonnigen Tag draußen am Teetisch und freut sich des Lebens. Wie durch Zufall fällt der Blick in die Teetasse - und es ist um die Harmonie
Im ersten Beitrag war definiert worden, was eine Summenzerlegung einer natürlichen Zahl n ist und u.a. gefragt worden: Wieviele verschiedene Summenzerlegungen gibt es für eine natürliche Zahl n? Heute will ich mit der Erforschung des Problems beginnen. Rekursive Ansätze,Summenzerlegungen nach der Größe bzw. Anzahl der Summanden, Dualität
Warum heißt die harmonische Reihe harmonische Reihe?
Was haben Pentagonalzahlen mit Kartenhäusern zu tun? Und in welcher Weise helfen beide bei der Frage nach den möglichen Summenzerlegungen einer natürlichen Zahl? Mathematik bringt oft unglaubliche Beziehungen zutage.  [Dieser Artikel ist Teil 4 des Sommerausflugs in die Kombinatorik.]
 Drei Ringe, die nicht voneinander gelöst werden können - entfernt man einen, so liegen die beiden anderen offen und unverbunden da. Ist das eine unmögliche Figur, die nur als optische Täuschung existieren kann? Nein! Diese Anordnung von 3 Ringen, die ihren Namen nach einem italienischen Adel
 Gegeben sind zwei Quader im Raum, in allgemeiner Lage. Gesucht ist ein Verfahren, mit dem bestimmt werden kann, ob diese beiden Quader sich schneiden oder nicht. Lösungsvorschläge sind erwünscht, insbesondere solche, das Problem auf effiziente Art lösen.
In diesem Artikel möchte ich Euch, liebe Planetarier, einige schöne Anwendungen der Topologie in der Geometrie und auch im Alltag vorstellen. Als "Höhepunkt" werde ich die Frage beantworten, ob es immer möglich ist, dass man ein belegtes Brötchen, ganz egal wie die Teile aufei
Neulich war ich beim Kaffeetrinken gesessen, als ein Bekannter ein nettes kleines Zahlenspiel vorgeführt hat. Ich möchte es mit Euch spielen und natürlich will ich den Beweis, dass und wie es funktioniert, nicht schuldig bleiben.
Einführung in die Theorie des deterministischen Chaos am Leitfaden von "Chaos - Bausteine der ordnung" von Pleitgen
Dies ist nun der lange angekündigte zweite Teil der Reihe zur Chaostheorie. Der Artikel beschäftigt sich mit der Periodenverdopplung und verschiedenen Formen von Chaos.
Das Collatz-Problem lautet: Man beginne mit einer beliebigen natürlichen Zahl x_0 und bilde damit die rekursive Zahlenfolge x_(n+1)=fdef(1/2*x_n, für x_n gerade;3*x_n+1, für x_n ungerade) Die Folge endet, wenn sie den Wert 1 erreicht hat. Die Vermutung ist nun, daß die Folge schließlich immer die 1 erreicht und dann periodisch wird.
Beispiele zur Gewinnung von Palindromzahlen, Beispiel für Palindromwörter und Sätze sowie eine angeregte Diskussion darüber.
Superellipsen [von shadowking] Druckerfreundliche Ansicht (Kleine_Meerjungfrau/Gockel)
Wir leben in einer Welt 2. Typs; das erkennt man an folgendem:

1. Der Satz des Pythagoras gilt
2. Es gibt bewegungsinvariante Flächenmaße
3. Mit jedem Zirkel kann man Kreise zeichnen

Doch was wäre, wenn wir etwa in einer Welt 3. Typs leben würden?

Wenn der "Satz des Pythagoras" etwa lauten würde:
a3 + b3 = c3 für rechtwinklige Dreiecke?
Die Einführung des Euro als alleiniges, gemeinsames Zahlungsmittel in 12 europäischen Ländern am 1.1.2002 ist beschlossen.
Aus mathematischer Sicht ergeben sich zwei Fragestellungen: Wie konstruiert man ein Euro-Zeichen?
Welche Faustregel kann man für die Umrechnung Euro in DM anwenden?
Was ist eine fermatsche Pseudoprimzahl? Was sind ihre Eigenschaften
Kurzbeschreibung, was Fraktale sind.
Dritter und Letzter Teil der Artikelreihe über elliptische Kurven und ihre Anwendungen. Dieses Mal gehts um die Anwendungen in der Zahlentheorie, speziell die Elliptic-Curves-Method zur Faktorisierung natürlicher Zahlen und das Goldwasser-Kilian-Zertifikat, das die Primalität einer Zahl beweist.
Dies soll der Beginn einer Artikelserie über fraktale Geometrie sein. Es wird sich dabei um eine topologische Einführung in das Thema handeln und soll die fraktale Geometrie vorstellen, wie ich sie auch schon in meinem Artikel über das Sierpinski-Dreieck angewandt habe. Zunächst sind drei Teile gep
Nachdem wir im ersten Artikel die topologischen Grundlagen gelegt haben, werden wir uns nun mit den iterierten Funktionensystemen beschäftigen. Wir werden diese Systeme definieren und einen Konvergenzbegriff für iterierte Funktionensysteme erarbeiten. Wir werden festellen, dass unter gewissen Umstän
Im dritten und letzten Teil meiner Reihe zur Fraktalen Geometrie möchte ich euch nun einige Beispiele präsentieren. Dabei werde ich beim ersten Beispiel immer wieder auf die entsprechenden Passagen der ersten beiden Artikel verweisen. Für die anderen Beispiele müsst ihr dann bei Bedarf eben selbst n

Erklärungsversuch, was die Riemannsche Geometrie, die man in der Allgemeinen Relativitätstheorie braucht, darstellt.
Einführung in die Symbolik der physikalischen Vektoranalysis mit Nabla-, Divergenz, Rotations- und Laplace-Operator. Als Anwendungsbeispiel wird die Ladungserhaltung aus den Maxwell'schen Gleichungen gefolgert.

Krümmung von Kurven im R², R³ und allgemein im R^n mit ausführlichen Beispielen.
Ein Artikel über den Satz von Fenchel, der angibt, wie stark sich eine Raumkurve krümmen muss, um sich zu schließen bzw. wie man einer Kurve ansieht, ob sie in einer Ebene liegt oder nicht.

--- 41 Einträge Druckansicht der Liste ---

Heute, Gestern, vor 2 oder 3 Tagen geändert

 

 

 

Notizbuch der Arbeitsgruppe Alexandria


 
All logos and trademarks in this site are property of their respective owner. The comments are property of their posters, all the rest © 2001-2014 by Matroids Matheplanet
This web site was made with PHP-Nuke, a web portal system written in PHP. PHP-Nuke is Free Software released under the GNU/GPL license.
Ich distanziere mich von rechtswidrigen oder anstößigen Inhalten, die sich trotz aufmerksamer Prüfung hinter hier verwendeten Links verbergen mögen.
Lesen Sie die Nutzungsbedingungen, die Distanzierung, die Datenschutzerklärung und das Impressum.
[Seitenanfang]