Bearbeiten von: [Änderungshistorie]
  Zeilenumbrüche automatisch mache ich selbst mit HTML    

Ich möchte eine Mail an , nachdem mein Vorschlag bearbeitet ist.
  Nachricht zur Änderung:

Input assistance tools (JavaScript): [Link extern intern] [MathML?] [$$?]
[fed-area] [LaTeX-inline] [LaTeX-display] [Tikz] [hide-area][show-area] [Source code [num.]][?]
[Link zurück zum Artikel]

Vorschau:
Pi und die Gammafunktion
Ich möchte in diesem Artikel zeigen, wie man nur mit elementarer Analysis und etwas Trigonometrie einige neue Werte der Gammafunktion im Intervall (0,1) ausrechnen kann. Es soll hier eher um die Grundidee gehen, darum bin ich an manchen Stellen nicht rigoros. Die Inspiration dazu kommt (mal wieder) von Carl Friedrich Gauß. Der junge Carl Friedrich beschäftigt sich nämlich bereits 1796 als 19-jähriger in seinem Tagebuch [Carl Friedrich Gauss Werke Band X.1] mit folgendem Problem: Die Lemniskate zum "Radius" a ist gegeben durch die Menge aller Punkte (x,y) für die gilt: \((x^2 + y^2)^2 = 2 a^2 (x^2 - y ^2)\) Wie für den Einheitskreis mit Radius 1, beschränken wir uns im Folgenden auf die "Einheitslemniskate" mit \(a= \frac{1}{\sqrt{2}}\), damit die Gleichung so einfach wie möglich ist. 1.) Gegeben den Abstand r eines Punktes auf der Lemniskate zum Ursprung, wie lang ist die Bogenlänge der Kurve s vom Ursprung bis zu diesem Punkt? Und andersrum: 2.) Gegeben die Bogenlänge s, was ist der Abstand r dieses Punktes?
 
All logos and trademarks in this site are property of their respective owner. The comments are property of their posters, all the rest © 2001-2022 by Matroids Matheplanet
This web site was originally made with PHP-Nuke, a former web portal system written in PHP that seems no longer to be maintained nor supported. PHP-Nuke is Free Software released under the GNU/GPL license.
Ich distanziere mich von rechtswidrigen oder anstößigen Inhalten, die sich trotz aufmerksamer Prüfung hinter hier verwendeten Links verbergen mögen.
Lesen Sie die Nutzungsbedingungen, die Distanzierung, die Datenschutzerklärung und das Impressum.
[Seitenanfang]