Bearbeiten von: [Änderungshistorie]
  Zeilenumbrüche automatisch mache ich selbst mit HTML    

Ich möchte eine Mail an , nachdem mein Vorschlag bearbeitet ist.
  Nachricht zur Änderung:

Input assistance tools (JavaScript): [Link extern intern] [MathML?] [$$?]
[fed-area] [LaTeX-inline] [LaTeX-display] [Tikz] [hide-area][show-area] [Source code [num.]][?]
[Link zurück zum Artikel]

Vorschau:
Teilbarkeit von Binomialkoeffizienten durch Primzahlen und Primzahlpotenzen
\(\renewcommand{\Re}{\operatorname{Re}} \renewcommand{\Im}{\operatorname{Im}} \newcommand{\End}{\operatorname{End}} \newcommand{\id}{\operatorname{id}} \newcommand{\GL}{\operatorname{GL}} \newcommand{\im}{\operatorname{im}} \newcommand{\sgn}{\operatorname{sgn}} \newcommand{\d}{{\rm d}} \newcommand{\rg}{\operatorname{rg}} \newcommand{\spur}{\operatorname{spur}} \newcommand{\Hom}{\operatorname{Hom}} \newcommand{\tr}{\operatorname{tr}} \newcommand{\opn}{\operatorname} \newcommand\ceil[1]{\left\lceil #1 \right\rceil} \newcommand\floor[1]{\left\lfloor #1 \right\rfloor}\)

Teilbarkeit von Binomialkoeffizienten durch Primzahlen und Primzahlpotenzen

Die Aussage, dass für eine Primzahl $p$ der Binomialkoeffizient $\binom pk$ für $1\leq k \leq p-1$ durch $p$ teilbar ist, ist für die meisten auf dem Matheplaneten wohl nicht neu. Weniger bekannt dürfte sein, wie man für einen beliebigen Binomialkoeffizienten $\binom nk$ effizient herausfinden kann, mit welchem Rest er durch $p$ teilbar ist, oder wie man die größte Potenz von $p$ findet, die $\binom nk$ teilt. Die Antworten auf diese Fragen liefern die Sätze von Lucas und Kummer, die wir in diesem Artikel herleiten werden. Indem wir auch die Binomialkoeffizenten $\binom {-n}k$ betrachten, werden sich zudem noch weitere Zusammenhänge offenbaren.
  • Definition und erste Teilbarkeitseigenschaften
  • Der Satz von Lucas
  • Eine Symmetrie im Pascalschen Dreieck
  • Die Formel von Legendre
  • Der Satz von Kummer
  • Abschließende Worte
 
All logos and trademarks in this site are property of their respective owner. The comments are property of their posters, all the rest © 2001-2023 by Matroids Matheplanet
This web site was originally made with PHP-Nuke, a former web portal system written in PHP that seems no longer to be maintained nor supported. PHP-Nuke is Free Software released under the GNU/GPL license.
Ich distanziere mich von rechtswidrigen oder anstößigen Inhalten, die sich trotz aufmerksamer Prüfung hinter hier verwendeten Links verbergen mögen.
Lesen Sie die Nutzungsbedingungen, die Distanzierung, die Datenschutzerklärung und das Impressum.
[Seitenanfang]