Themen-Übersicht |
xiao_shi_tou_ Senior Dabei seit: 12.08.2014
Mitteilungen: 1251
Herkunft: Augsburg
 | Themenstart: 2019-11-03 20:19
\(\begingroup\)\(\DeclareMathOperator{\mer}{mer}
\DeclareMathOperator{\Sht}{Sht}
\DeclareMathOperator{\Ann}{Ann}
\DeclareMathOperator{\Et}{\acute{E}t}
\DeclareMathOperator{\et}{\acute{e}t}
\DeclareMathOperator{\etaleness}{\acute{e}taleness}
\newcommand{\h}{\o{h}}
\DeclareMathOperator{\H}{H}
\DeclareMathOperator{\ind}{ind}
\DeclareMathOperator{\etale}{\acute{e}tale}
\DeclareMathOperator{\Coker}{Coker}
\DeclareMathOperator{\Div}{Div}
\DeclareMathOperator{\Gl}{GL}
\DeclareMathOperator{\PGL}{PGL}
\DeclareMathOperator{\dom}{dom}
\DeclareMathOperator{\PSL}{PSL}
\DeclareMathOperator{\SL}{SL}
\DeclareMathOperator{\Res}{Res}
\DeclareMathOperator{\equi}{equi}
\DeclareMathOperator{\Hecke}{Hecke}
\DeclareMathOperator{\Aut}{Aut}
\DeclareMathOperator{\Jac}{Jac}
\DeclareMathOperator{\GL}{GL}
\DeclareMathOperator{\HF}{HF}
\DeclareMathOperator{\HS}{HS}
\DeclareMathOperator{\Ker}{Ker}
\DeclareMathOperator{\trdeg}{trdeg}
\DeclareMathOperator{\mod}{mod}
\DeclareMathOperator{\codim}{codim}
\DeclareMathOperator{\log}{log}
\DeclareMathOperator{\Log}{Log}
\DeclareMathOperator{\Nm}{Nm}
\DeclareMathOperator{\Con}{Con}
\DeclareMathOperator{\coker}{coker}
\DeclareMathOperator{\Ob}{Ob}
\DeclareMathOperator{\Emb}{Emb}
\DeclareMathOperator{\Tr}{Tr}
\DeclareMathOperator{\Sym}{Sym}
\DeclareMathOperator{\scale}{scale}
\DeclareMathOperator{\Sper}{Sper}
\DeclareMathOperator{\Sp}{Sp}
\DeclareMathOperator{\vol}{vol}
\DeclareMathOperator{\Cl}{Cl}
\DeclareMathOperator{\Ét}{Ét}
\DeclareMathOperator{\Zar}{Zar}
\DeclareMathOperator{\lcm}{lcm}
\DeclareMathOperator{\ord}{ord}
\newcommand{\End}{\mathop{\mathrm{End}}\nolimits}
\newcommand{\cEnd}{\mathop{\mathcal{E}\!\mathit{nd}}\nolimits}
\DeclareMathOperator{\supp}{supp}
\DeclareMathOperator{\rad}{rad}
\DeclareMathOperator{\lim}{lim}
\DeclareMathOperator{\char}{char}
\DeclareMathOperator{\Proj}{Proj}
\DeclareMathOperator{\proj}{proj}
\DeclareMathOperator{\length}{length}
\DeclareMathOperator{\locArt}{locArt}
\DeclareMathOperator{\Ass}{Ass}
\DeclareMathOperator{\id}{id}
\DeclareMathOperator{\im}{im}
\DeclareMathOperator{\Pic}{Pic}
\DeclareMathOperator{\Spec}{Spec}
\DeclareMathOperator{\Gal}{Gal}
\DeclareMathOperator{\Hom}{Hom}
\DeclareMathOperator{\ker}{ker}
\DeclareMathOperator{\ht}{ht}
\DeclareMathOperator{\Frob}{Frob}
\DeclareMathOperator{\Frac}{Frac}
\DeclareMathOperator{\det}{det}
\newcommand{\AA}{\sc{A}}
\newcommand{\Rem}{\gudl{\sc{R}\!emark}}
\newcommand{\Def}{\color{orange}{\underline{\color{black}{\sc{D}\!efinition}}}}
\newcommand{\Defn}[1]{\color{orange}{\underline{\color{black}{\sc{D}\!efinition\tx{}#1}}}}
\newcommand{\Prop}{\color{orange}{\underline{\color{black}{\sc{P}\!roposition}}}}
\newcommand{\Propn}[1]{\color{orange}{\underline{\color{black}{\sc{P}\!roposition\tx{}#1}}}}
\newcommand{\Claim}{\gudl{\sc{C}\!laim\colon}}
\newcommand{\Claimn}[1]{\gudl{\sc{C}\!laim \tx{}#1}}
\newcommand{\Thm}{\color{orange}{\underline{\color{black}{\sc{T}\!heorem}}}}
\newcommand{\Thmn}[1]{\gudl{\sc{T}\!heorem\tx{}#1}}
\newcommand{\O}{\c{O}}
\DeclareMathOperator{\Ouv}{Ouv}
\newcommand{\Cor}{\color{orange}{\underline{\color{black}{\sc{C}\!orollary}}}}
\newcommand{\Corn}[1]{\color{orange}{\underline{\color{black}{\sc{C}\!orollary\tx{}#1}}}}
\newcommand{\Fct}{\color{orange}{\underline{\color{black}{\sc{F}\!act}}}}
\newcommand{\Fctn}[1]{\color{orange}{\underline{\color{black}{\sc{F}\!act\tx{}#1}}}}
\newcommand{\Lem}{\color{orange}{\underline{\color{black}{\sc{L}\!emma}}}}
\newcommand{\Lemn}[1]{\color{orange}{\underline{\color{black}{\sc{L}\!emma\tx{}#1}}}}
\newcommand{\Exp}{\color{orange}{\underline{\color{black}{\sc{E}\!xample}}}}
\newcommand{\Expn}[1]{\color{orange}{\underline{\color{black}{\sc{E}\!xample\tx{}#1}}}}
\newcommand{\Rem}{\gudl{\sc{R}\!emark\colon}}
\newcommand{\Remn}[1]{\gudl{\sc{R}\!emark #1\colon}}
\newcommand{\brc}[1]{[\![#1]\!]}
\newcommand{\qst}{{}^{\color{red}{[?]}}}
\newcommand{\qstn}[1]{{}^{\color{red}{[?,#1]}}}
\newcommand{\sto}{\overset{\sim}{\to}}
\newcommand{\Ga}{\mathbb{G}_a}
\newcommand{\G}{\mathbb{G}}
\newcommand{\B}{\mathbb{B}}
\newcommand{\Gm}{\G_m}
\newcommand{\d}[1]{_{#1}}
\newcommand{\nz}{\not=0}
\newcommand{\x}{(x)}
\newcommand{\y}{(y)}
\newcommand{\r}[1]{\mid_{#1}}
\newcommand{\ij}{(i,j)}
\newcommand{\o}[1]{\operatorname{#1}}
\newcommand{\ne}{\not=\emptyset}
\newcommand{\ISLn}{\mathbb{S}\mathbb{L}_n}
\newcommand{\tfae}{\textbf{T.F.A.E.}}
\newcommand{\ndownlong}[2]{#1\ -\!\!\!\rightharpoonup\!\leftharpoondown\!\to\! #2}
\newcommand{\OC}{\c{O}_C}
\newcommand{\OF}{\c{O}_F}
\newcommand{\gsp}[1]{\udl{\Spec}_S(#1)}
\newcommand{\shso}{\udl{\text{Sheaves on}}}
\newcommand{\shs}{\udl{\text{Sheaves}}}
\newcommand{\ush}[1]{\udl{\text{Sheaf}}(#1)}
\newcommand{\sh}{\udl{\text{Sheaf}}}
\newcommand{\rr}{/\!\!/}
\newcommand{\EE}{\mathscr{E}}
\newcommand{\V}{\mathbb{V}}
\newcommand{\ddd}{(d,d_1,d_2)}
\newcommand{\Vd}{V_{d,d_1,d_2}}
\newcommand{\xy}{(x,y)}
\newcommand{\OX}{\c{O}_X}
\newcommand{\Ox}{\c{O}_{X,x}}
\newcommand{\KK}{\mathbb{K}}
\newcommand{\lims}{\limsup_{n\to \infty}}
\newcommand{\proof}{\gudl{\mathscr{P}\!roof}\colon}
\newcommand{\proofofprop}[1]{\underline{\color{orange}{\mathscr{P}\!roof\tx{}of\tx{}\sc{P}\!roposition\tx{}#1}\colon}}
\newcommand{\proofofcor}[1]{\underline{\color{orange}{\mathscr{P}\!roof\tx{}of\tx{}\sc{C}\!orollary\tx{}#1}\colon}}
\newcommand{\proofofthm}{\gudl{\sc{P}\!roof\tx{}of\tx{}\sc{T}\!heorem\colon}}
\newcommand{\proofofthmn}[1]{\gudl{\sc{P}\!roof\tx{}of\tx{}\sc{T}\!heorem\tx{}#1\colon}}
\newcommand{\Bew}{\underline{\color{orange}{\mathscr{B}\!eweis}\colon}}
\newcommand{\defeq}{\overset{\mathscr{D}\mathscr{e}\mathscr{f}.}{=\!=}}
\newcommand{\set}[2]{\{#1\mid #2\}}
\newcommand{\SS}{\mathscr{S}}
\newcommand{\FF}{\mathscr{F}}
\newcommand{\DD}{\mathscr{D}}
\newcommand{\dyadksum}[1]{\sum_{I\in \DD_k,I\sube J}#1}
\newcommand{\noem}{\not=\emptyset}
\newcommand{\DD}{\c{D}}
\newcommand{\BB}{\mathscr{B}}
\newcommand{\Pr}{\ff{P}}
\newcommand{\exact}[3]{0\to #1\to #2\to#3\to 0}
\newcommand{\qed}{\gudl{\ff{Q}.\ff{E}.\ff{D}.}}
\newcommand{\wt}[1]{\widetilde{#1}}
\newcommand{\wh}[1]{\widehat{#1}}
\newcommand{\spr}[1]{\Sper(#1)}
\newcommand{\LL}{\mathscr{L}}
\newcommand{\sp}[1]{\Spec(#1)}
\newcommand{\nuplong}[2]{#1\ -\!\!\!\rightharpoondown\!\leftharpoonup\!\to\! #2}
\newcommand{\ndownloong}[2]{#1 -\!\!\!-\!\!\!\rightharpoonup\!\leftharpoondown\!\!\!\longrightarrow \!#2}
\newcommand{\bop}{\bigoplus}
\newcommand{\eps}{\epsilon}
\newcommand{\K}{\mathbb{K}}
\newcommand{\lxen}{\langle x_1\cos x_n\rangle}
\newcommand{\Xen}{[X_1\cos X_n]}
\newcommand{\xen}{[x_1\cos x_n]}
\newcommand{\ip}{\langle -,- \rangle}
\newcommand{\ipr}[2]{\langle #1,#2 \rangle}
\newcommand{\vth}{\vartheta}
\newcommand{\pprod}{\prod_{v\in\ff{M}_\K}}
\newcommand{\pfam}[1]{(#1)_{v\in\ff{M}_\K}}
\newcommand{\pl}[1]{\ff{S}(#1)}
\newcommand{\plf}[1]{\ff{S}_{\o{fin}}(#1)}
\newcommand{\pli}[1]{\ff{S}_{\inf}(#1)}
\newcommand{\finfam}[1]{(#1)_{i=1}^n}
\newcommand{\fam}[1]{(#1)_{i\in I}}
\newcommand{\jfam}[1]{(#1)_{j\in J}}
\newcommand{\kfam}[1]{(#1)_{k\in K}}
\newcommand{\nfam}[1]{(#1)_{i=1}^n}
\newcommand{\nifam}[1]{(#1)_{n=0}^\infty}
\newcommand{\udl}[1]{\underline{#1}}
\newcommand{\Uij}{U_i\cap U_j}
\newcommand{\vpi}{\varphi_i}
\newcommand{\vpj}{\varphi_j}
\newcommand{\vph}{\varphi}
\newcommand{\psij}{\psi_{i,j}}
\newcommand{\CC}{\c{C}}
\newcommand{\nsum}{\sum_{n\in\N}}
\newcommand{\twist}[1]{\c{O}_{\mathbb{P}_k^n}(#1)}
\newcommand{\prj}[1]{\Proj (#1)}
\newcommand{\part}[2]{\frac{\partial #1}{\partial #2}}
\newcommand{\kxn}{k[x_0,\pts,x_n]}
\newcommand{\ques}{\gudl{\c{Q}\!uestion\colon}}
\newcommand{\quesn}[1]{\gudl{\c{Q}\!uestion\tx{}#1\colon}}
\newcommand{\answ}{\gudl{\sc{A}\!nswer\colon}}
\newcommand{\cons}{\color{orange}{\udl{\color{black}{\sc{C}\!onsiderations:}}}}
\newcommand{\ka}{\kappa}
\newcommand{\pr}{\mathfrak{p}}
\newcommand{\abs}[1]{\left| #1\right|}
\newcommand{\ab}{\left|-\right|}
\newcommand{\eps}{\epsilon}
\newcommand{\N}{\mathbb{N}}
\newcommand{\KX}{K[X]}
\newcommand{\cov}{\c{U}}
\newcommand{\ff}[1]{\mathfrak{#1}}
\newcommand{\legendre}[2]{\left(\frac{#1}{#2}\right)}
\newcommand{\half}{\frac{1}{2}}
\newcommand{\ANF}{K/\Q}
\newcommand{\GFF}{F/{\F_p(t)}}
\newcommand{\Os}{\mathcal{O}_{S,s}}
\newcommand{\lineb}{\sc{L}}
\newcommand{\cyclm}{\Q(\sqrt[m]{1})}
\newcommand{\cyclmK}{K(\sqrt[m]{1})}
\newcommand{\LX}{L[X]}
\newcommand{\GG}{\sc{G}}
\newcommand{\OS}{\mathcal{O}_S}
\newcommand{\bb}[1]{\textbf{#1}}
\newcommand{\OY}{\mathcal{O}_Y}
\newcommand{\vdp}{\sc{V}\!an\text{ }der\text{ }\sc{P}\!ut}
\newcommand{\weierstrass}{\sc{W}\!eierstraß}
\newcommand{\runge}{\sc{R}\!unge}
\newcommand{\laurent}{\sc{L}\!aurent}
\newcommand{\grothendieck}{\sc{G}\!rothendieck}
\newcommand{\noether}{\sc{N}\!oether}
\newcommand{\glX}{\Gamma(X,\mathcal{O}_X)}
\newcommand{\glY}{\Gamma(Y,\mathcal{O}_Y)}
\newcommand{\finKX}{f\in K[X]}
\newcommand{\ser}[1]{\sm{n=0}{\infty}{#1}}
\newcommand{\sm}[3]{\underset{#1}{\overset{#2}{\sum}} #3}
\newcommand{\cl}[1]{\overline{#1}}
\newcommand{\sube}{\subseteq}
\newcommand{\hk}{\hookrightarrow}
\newcommand{\OYy}{\mathcal{O}_{Y,y}}
\newcommand{\supe}{\supseteq}
\newcommand{\resy}{\kappa(y)}
\newcommand{\LK}{L/K}
\newcommand{\iso}{\overset{\sim}{\to}}
\newcommand{\isom}[3]{#1\overset{#2}{\iso}#3}
\newcommand{\kn}{k^n}
\newcommand{\kvec}{\textbf{vect}(k)}
\newcommand{\fkvec}{\textbf{vect}_{<\infty}(k)}
\newcommand{\fz}{f(X)=0}
\newcommand{\KIsom}{L\underset{K}{\overset{\sim}{\to}} L}
\newcommand{\Q}{\mathbb{Q}}
\newcommand{\R}{\mathbb{R}}
\newcommand{\L}{\mathbb{L}}
\newcommand{\C}{\mathbb{C}}
\newcommand{\F}{\mathbb{F}}
\newcommand{\A}{\mathbb{A}}
\newcommand{\ad}{\A_k}
\newcommand{\P}{\mathbb{P}}
\newcommand{\Z}{\mathbb{Z}}
\newcommand{\Zp}{\mathbb{Z}_p}
\newcommand{\Qp}{\mathbb{Q}_p}
\newcommand{\Qq}{\mathbb{Q}_q}
\newcommand{\Fp}{\mathbb{F}_p}
\newcommand{\I}{[0,1]}
\newcommand{\In}{[0,1]^n}
\newcommand{\Fpn}{\mathbb{F}_{p^n}}
\newcommand{\Fpm}{\mathbb{F}_{p^m}}
\newcommand{\Zn}{\mathbb{Z}/{n\mathbb{Z}}}
\newcommand{\Zx}[1]{\mathbb{Z}/{#1\mathbb{Z}}}
\newcommand{\md}[3]{#1\equiv #2\pmod{#3}}
\newcommand{\ga}{\Gal(L/K)}
\newcommand{\aga}[1]{\Gal(\overline{#1}/#1)}
\newcommand{\sga}[1]{\Gal(#1^{sep}/{#1})}
\newcommand{\gal}[2]{\Gal(#1/{#2})}
\newcommand{\c}[1]{\mathcal{#1}}
\newcommand{\skw}{\{\tau\}}
\newcommand{\limes}[1]{\underset{i\in I}{\varprojlim{#1_i}}}
\newcommand{\IGLn}{\mathbb{G}\mathbb{L}_n}
\newcommand{\IGL}{\mathbb{G}\mathbb{L}}
\newcommand{\Co}[2]{H^p(#1,#2)}
\newcommand{\OK}{\mathcal{O}_K}
\newcommand{\OL}{\mathcal{O}_L}
\newcommand{\res}[1]{\kappa(#1)}
\newcommand{\resx}{\kappa(x)}
\newcommand{\lTen}{\langle T_1\cos T_n\rangle}
\newcommand{\lXen}{\langle X_1\cos X_n\rangle}
\newcommand{\Te}{[T]}
\newcommand{\Tee}{[T_1,T_2]}
\newcommand{\Teee}{[T_1,T_2,T_3]}
\newcommand{\Ten}{[T_1\cos T_n]}
\newcommand{\Tem}{[T_1\cos T_m]}
\newcommand{\pts}{\cdots}
\newcommand{\pt}{\cdot}
\newcommand{\hm}[3]{\Hom_{#1}(#2,#3)}
\newcommand{\hom}{\Hom}
\newcommand{\dash}{\dashrightarrow}
\newcommand{\schemes}{\bb{(Sch)}}
\newcommand{\groups}{\bb{(Grp)}}
\newcommand{\rings}{\bb{(Ring)}}
\newcommand{\tx}[1]{\text{ #1 }}
\newcommand{\mm}{\ff{m}}
\newcommand{\zkinfsum}{\sum_{k=0}^\infty}
\newcommand{\ziinfsum}{\sum_{i=0}^\infty}
\newcommand{\zjinfsum}{\sum_{j=0}^\infty}
\newcommand{\asum}[1]{\sum_{\a\in\N^n}#1 X^\a}
\newcommand{\arr}[3]{#1\overset{#2}{\to} #3}
\newcommand{\nrm}[1]{\left\|#1\right\|}
\newcommand{\nr}{\nrm{-}}
\newcommand{\ext}[2]{#1/{#2}}
\newcommand{\lam}{\lambda}
\newcommand{\a}{\alpha}
\newcommand{\be}{\beta}
\newcommand{\g}{\gamma}
\newcommand{\de}{\delta}
\newcommand{\vp}{\varphi}
\newcommand{\p}{\phi}
\newcommand{\bul}{\bullet}
\newcommand{\t}{\tau}
\newcommand{\s}{\sigma}
\newcommand{\ze}{\zeta}
\newcommand{\T}{\mathbb{T}}
\newcommand{\tm}{\times}
\newcommand{\tms}{\times\pts\times}
\newcommand{\ot}{\otimes}
\newcommand{\ots}{\otimes\pts\otimes}
\newcommand{\pls}{+\pts +}
\newcommand{\cos}{,\pts,}
\newcommand{\op}{\oplus}
\newcommand{\ops}{\oplus\pts\oplus}
\newcommand{\cr}{\circ}
\newcommand{\crs}{\circ\pts\circ}
\newcommand{\sc}[1]{\mathscr{#1}}
\newcommand{\scal}[2]{\sc{#1}{\!#2}}
\newcommand{\ov}[2]{\begin{matrix}#1 \\ #2\end{matrix}}
\newcommand{\viele}{\color{orange}{\udl{\color{black}{\sc{V}\!iele\tx{}\sc{G}\!r\overset{{}_{,,\!}}{u}\textit{ß}e}}}}
\newcommand{\xst}{\color{orange}{\udl{\color{black}{X.S.T.\sim 小石头}}}}
\newcommand{\gudl}[1]{\color{orange}{\udl{\color{black}{#1}}}}
\newcommand{\Task}{\gudl{\sc{T}\!ask:}}
\newcommand{\Exer}{\gudl{\sc{E}\!exercise:}}
\newcommand{\Drinfeld}{\gudl{\sc{D}\!rinfeld:}}
\newcommand{\Goss}{\gudl{\sc{G}\!oss}}
\newcommand{\CK}{C/K}
\newcommand{\CS}{C/S}
\newcommand{\Ck}{C/k}
\newcommand{\Om}{\Omega}
\newcommand{\J}{\Jac_{\CS}^{g-1}}
\newcommand{\Fact}{\gudl{\sc{F}\!act\colon}}
\newcommand{\Factn}[1]{\gudl{\sc{F}\!act\tx{}#1\colon}}
\)
Hallo zusammen.
Sei $B$ ein Ring der Charakteristik $p$ und sei $\mathbb{G}_a\to \sp{B}$ die additive Gruppe über $B$.
Man kann dann den Endomorphismenring $\cEnd_B(\mathbb{G}_a)$ mit dem Ring der Frobeniuspolynome $B\{\tau\}$ identifizieren.
Das ist mir klar, bis auf ein kleines Detail, das ich mir nicht erschließen kann.
Der Beweis beruht auf der Tatsache, dass $B\{\tau\}$ kanonisch isomorph ist zu dem Ring der Additiven Polynome $B_{add}[x]$. Ein Polynom $f\in B[x]$ heißt in diesem Kontext additiv, falls $f(x+y)=f(x)+f(y)$ in $B[x,y]$ gilt und als Multiplikation nimmt man die Verkettung von Polynomen.
Da es einen natürlichen Isomorphismus
$$\cEnd_B(\A_B^1)\cong \End_{B-\o{Alg}}(B[x])\cong \abs{B[x]}$$ gibt muss man nur zeigen, dass ein Endomorphismus von Schemata $\varphi\colon \A_B^1\to \A_B^1$ genau dann ein Endomorphismus von Gruppenschemata $\varphi\colon \mathbb{G}_a\to\mathbb{G}_a$ ist, wenn das unter dem oben angegebenen Isomorphismus korrespondierende Polynom $f\in B[x]$ additiv ist.
Sei also $\varphi$ ein Endomorphismus der affinen Geraden und sei $f$ das korrespondierende Polynom.
Aus der Definition von $\varphi\tm \varphi$ folgt, dass man immer
$(1)$ $$\varphi\tm \varphi(x\ot 1)=f(x)\ot 1$$
und
$\varphi\tm \varphi (1\ot x)=1\ot f(x)$ hat.
Es ist auch klar, dass immer $f(x)\ot 1=f(x\ot 1)$ und $1\ot f(x)=f(1\ot x)$ gilt.
Die Bedingung, dass $\varphi$ ein Endomorphismus von Gruppenschemata ist ist äquivalnt zu
$(2)$ $$f(x)\ot 1+1\ot f(x)=\varphi\tm\varphi(x\ot 1 +1\ot x)$$.
Identifiziert man $B[x,y]\cong B[x]\ot_{B}B[x]$, dann bedeutet das, dass $f$ genau dann additiv ist, wenn $f(x\ot 1+1\ot x)=f(x\ot 1)+f(1\ot x)$ gilt.
Die einzige Aussage die es also zu zeigen gibt ist
$(3)$ $$f(x\ot 1+1\ot x)=\varphi\tm\varphi(x\ot 1+1\ot x)$$, denn dann ist $(2)$ offenbar äquivalent dazu, dass $f$ additiv ist.
Mir ist nicht klar, warum das gelten sollte.
In mindestens zwei Büchern die über dieses Thema berichten wird diese Stelle nicht begründet/näher ausgeführt und in einer Arbeit die mir vorliegt wird diese Gleichheit mit einem Ausrufezeichen versehen, welches nicht kommentiert wird. Außerdem schreibt der Autor die Gleichungen in einer falsch anmutenden Reihenfolge:
Die gelb markierten Gleichungen sind auf jeden Fall korrekt. Den Rest habe ich mit einem blauen Stift abgetrennt. Falls das Diagramm kommutiert, dann ist die Gleichung $F\tm F(T_1+T_2)=F(T_1)+F(T_2)$ korrekt, wenn $F$ additiv ist, dann gilt $F(T_1+T_2)=F(T_1)+F(T_2)$.
Ich würde mich sehr für eine Antwort interessieren.
Viele Grüße
\(\endgroup\)
|
Triceratops Aktiv Dabei seit: 28.04.2016
Mitteilungen: 5277
Herkunft: Berlin
 | Beitrag No.1, eingetragen 2019-11-03 21:36
Bevor ich auf deinen Beweis eingehe, hier der Beweis, der mit der funktoriellen Definition von Gruppenschemata arbeitet.
$\mathbb{G}_a$ ist einfach der Vergissfunktor $\mathbf{CAlg}_B \to \mathbf{Ab}$, der die Multiplikation vergisst.
Ein Morphismus von Gruppenschemata ist eine natürliche Transformation der Funktoren.
Das heißt hier: Der zu einem Polynom $f \in B[x]$ gehörige Morphismus von Schemata $\mathbb{G}_a \to \mathbb{G}_a$ ist genau dann ein Morphismus von Gruppenschemata, wenn für alle (!) kommutativen $B$-Algebren $C$ die induzierte Abbildung $\mathbb{G}_a(C) \to \mathbb{G}_a(C)$, $c \mapsto f(c)$ ein Homomorphismus von abelschen Gruppen, also letztendlich additiv ist. Das bedeutet, es muss $f(c+c') = f(c)+f(c')$ für alle $c,c' \in C$ gelten. Das gilt insbesondere im universellen Fall $C = B[x,y]$ mit $c=x$ und $c'=y$. Umgekehrt reicht dieser universelle Fall auch schon aus, wie man leicht sieht.
Zu deinem Post nun:
Der Beweis mit der Grafik ist so zu verstehen: Die Kommutativität des ersten Diagramms ist zur Kommutativität des zweiten Diagramms äquivalent. Nun formt man diese äquvialent um:
Diagramm ist kommutativ
$\iff (F \otimes F) \circ \Gamma(\mu) = \Gamma(\mu) \circ F$
$\iff (F \otimes F)(\Gamma(\mu)(T)) = \Gamma(\mu)(F(T))$
$\iff (F \otimes F)(T_1 + T_2) = F(T_1 + T_2)$
$\iff F(T_1) + F(T_2) = F(T_1 + T_2)$
Und das war's schon.
|
xiao_shi_tou_ Senior Dabei seit: 12.08.2014
Mitteilungen: 1251
Herkunft: Augsburg
 | Beitrag No.2, vom Themenstarter, eingetragen 2019-11-03 22:57
\(\begingroup\)\(\DeclareMathOperator{\mer}{mer}
\DeclareMathOperator{\Sht}{Sht}
\DeclareMathOperator{\Ann}{Ann}
\DeclareMathOperator{\Et}{\acute{E}t}
\DeclareMathOperator{\et}{\acute{e}t}
\DeclareMathOperator{\etaleness}{\acute{e}taleness}
\newcommand{\h}{\o{h}}
\DeclareMathOperator{\H}{H}
\DeclareMathOperator{\ind}{ind}
\DeclareMathOperator{\etale}{\acute{e}tale}
\DeclareMathOperator{\Coker}{Coker}
\DeclareMathOperator{\Div}{Div}
\DeclareMathOperator{\Gl}{GL}
\DeclareMathOperator{\PGL}{PGL}
\DeclareMathOperator{\dom}{dom}
\DeclareMathOperator{\PSL}{PSL}
\DeclareMathOperator{\SL}{SL}
\DeclareMathOperator{\Res}{Res}
\DeclareMathOperator{\equi}{equi}
\DeclareMathOperator{\Hecke}{Hecke}
\DeclareMathOperator{\Aut}{Aut}
\DeclareMathOperator{\Jac}{Jac}
\DeclareMathOperator{\GL}{GL}
\DeclareMathOperator{\HF}{HF}
\DeclareMathOperator{\HS}{HS}
\DeclareMathOperator{\Ker}{Ker}
\DeclareMathOperator{\trdeg}{trdeg}
\DeclareMathOperator{\mod}{mod}
\DeclareMathOperator{\codim}{codim}
\DeclareMathOperator{\log}{log}
\DeclareMathOperator{\Log}{Log}
\DeclareMathOperator{\Nm}{Nm}
\DeclareMathOperator{\Con}{Con}
\DeclareMathOperator{\coker}{coker}
\DeclareMathOperator{\Ob}{Ob}
\DeclareMathOperator{\Emb}{Emb}
\DeclareMathOperator{\Tr}{Tr}
\DeclareMathOperator{\Sym}{Sym}
\DeclareMathOperator{\scale}{scale}
\DeclareMathOperator{\Sper}{Sper}
\DeclareMathOperator{\Sp}{Sp}
\DeclareMathOperator{\vol}{vol}
\DeclareMathOperator{\Cl}{Cl}
\DeclareMathOperator{\Ét}{Ét}
\DeclareMathOperator{\Zar}{Zar}
\DeclareMathOperator{\lcm}{lcm}
\DeclareMathOperator{\ord}{ord}
\newcommand{\End}{\mathop{\mathrm{End}}\nolimits}
\newcommand{\cEnd}{\mathop{\mathcal{E}\!\mathit{nd}}\nolimits}
\DeclareMathOperator{\supp}{supp}
\DeclareMathOperator{\rad}{rad}
\DeclareMathOperator{\lim}{lim}
\DeclareMathOperator{\char}{char}
\DeclareMathOperator{\Proj}{Proj}
\DeclareMathOperator{\proj}{proj}
\DeclareMathOperator{\length}{length}
\DeclareMathOperator{\locArt}{locArt}
\DeclareMathOperator{\Ass}{Ass}
\DeclareMathOperator{\id}{id}
\DeclareMathOperator{\im}{im}
\DeclareMathOperator{\Pic}{Pic}
\DeclareMathOperator{\Spec}{Spec}
\DeclareMathOperator{\Gal}{Gal}
\DeclareMathOperator{\Hom}{Hom}
\DeclareMathOperator{\ker}{ker}
\DeclareMathOperator{\ht}{ht}
\DeclareMathOperator{\Frob}{Frob}
\DeclareMathOperator{\Frac}{Frac}
\DeclareMathOperator{\det}{det}
\newcommand{\AA}{\sc{A}}
\newcommand{\Rem}{\gudl{\sc{R}\!emark}}
\newcommand{\Def}{\color{orange}{\underline{\color{black}{\sc{D}\!efinition}}}}
\newcommand{\Defn}[1]{\color{orange}{\underline{\color{black}{\sc{D}\!efinition\tx{}#1}}}}
\newcommand{\Prop}{\color{orange}{\underline{\color{black}{\sc{P}\!roposition}}}}
\newcommand{\Propn}[1]{\color{orange}{\underline{\color{black}{\sc{P}\!roposition\tx{}#1}}}}
\newcommand{\Claim}{\gudl{\sc{C}\!laim\colon}}
\newcommand{\Claimn}[1]{\gudl{\sc{C}\!laim \tx{}#1}}
\newcommand{\Thm}{\color{orange}{\underline{\color{black}{\sc{T}\!heorem}}}}
\newcommand{\Thmn}[1]{\gudl{\sc{T}\!heorem\tx{}#1}}
\newcommand{\O}{\c{O}}
\DeclareMathOperator{\Ouv}{Ouv}
\newcommand{\Cor}{\color{orange}{\underline{\color{black}{\sc{C}\!orollary}}}}
\newcommand{\Corn}[1]{\color{orange}{\underline{\color{black}{\sc{C}\!orollary\tx{}#1}}}}
\newcommand{\Fct}{\color{orange}{\underline{\color{black}{\sc{F}\!act}}}}
\newcommand{\Fctn}[1]{\color{orange}{\underline{\color{black}{\sc{F}\!act\tx{}#1}}}}
\newcommand{\Lem}{\color{orange}{\underline{\color{black}{\sc{L}\!emma}}}}
\newcommand{\Lemn}[1]{\color{orange}{\underline{\color{black}{\sc{L}\!emma\tx{}#1}}}}
\newcommand{\Exp}{\color{orange}{\underline{\color{black}{\sc{E}\!xample}}}}
\newcommand{\Expn}[1]{\color{orange}{\underline{\color{black}{\sc{E}\!xample\tx{}#1}}}}
\newcommand{\Rem}{\gudl{\sc{R}\!emark\colon}}
\newcommand{\Remn}[1]{\gudl{\sc{R}\!emark #1\colon}}
\newcommand{\brc}[1]{[\![#1]\!]}
\newcommand{\qst}{{}^{\color{red}{[?]}}}
\newcommand{\qstn}[1]{{}^{\color{red}{[?,#1]}}}
\newcommand{\sto}{\overset{\sim}{\to}}
\newcommand{\Ga}{\mathbb{G}_a}
\newcommand{\G}{\mathbb{G}}
\newcommand{\B}{\mathbb{B}}
\newcommand{\Gm}{\G_m}
\newcommand{\d}[1]{_{#1}}
\newcommand{\nz}{\not=0}
\newcommand{\x}{(x)}
\newcommand{\y}{(y)}
\newcommand{\r}[1]{\mid_{#1}}
\newcommand{\ij}{(i,j)}
\newcommand{\o}[1]{\operatorname{#1}}
\newcommand{\ne}{\not=\emptyset}
\newcommand{\ISLn}{\mathbb{S}\mathbb{L}_n}
\newcommand{\tfae}{\textbf{T.F.A.E.}}
\newcommand{\ndownlong}[2]{#1\ -\!\!\!\rightharpoonup\!\leftharpoondown\!\to\! #2}
\newcommand{\OC}{\c{O}_C}
\newcommand{\OF}{\c{O}_F}
\newcommand{\gsp}[1]{\udl{\Spec}_S(#1)}
\newcommand{\shso}{\udl{\text{Sheaves on}}}
\newcommand{\shs}{\udl{\text{Sheaves}}}
\newcommand{\ush}[1]{\udl{\text{Sheaf}}(#1)}
\newcommand{\sh}{\udl{\text{Sheaf}}}
\newcommand{\rr}{/\!\!/}
\newcommand{\EE}{\mathscr{E}}
\newcommand{\V}{\mathbb{V}}
\newcommand{\ddd}{(d,d_1,d_2)}
\newcommand{\Vd}{V_{d,d_1,d_2}}
\newcommand{\xy}{(x,y)}
\newcommand{\OX}{\c{O}_X}
\newcommand{\Ox}{\c{O}_{X,x}}
\newcommand{\KK}{\mathbb{K}}
\newcommand{\lims}{\limsup_{n\to \infty}}
\newcommand{\proof}{\gudl{\mathscr{P}\!roof}\colon}
\newcommand{\proofofprop}[1]{\underline{\color{orange}{\mathscr{P}\!roof\tx{}of\tx{}\sc{P}\!roposition\tx{}#1}\colon}}
\newcommand{\proofofcor}[1]{\underline{\color{orange}{\mathscr{P}\!roof\tx{}of\tx{}\sc{C}\!orollary\tx{}#1}\colon}}
\newcommand{\proofofthm}{\gudl{\sc{P}\!roof\tx{}of\tx{}\sc{T}\!heorem\colon}}
\newcommand{\proofofthmn}[1]{\gudl{\sc{P}\!roof\tx{}of\tx{}\sc{T}\!heorem\tx{}#1\colon}}
\newcommand{\Bew}{\underline{\color{orange}{\mathscr{B}\!eweis}\colon}}
\newcommand{\defeq}{\overset{\mathscr{D}\mathscr{e}\mathscr{f}.}{=\!=}}
\newcommand{\set}[2]{\{#1\mid #2\}}
\newcommand{\SS}{\mathscr{S}}
\newcommand{\FF}{\mathscr{F}}
\newcommand{\DD}{\mathscr{D}}
\newcommand{\dyadksum}[1]{\sum_{I\in \DD_k,I\sube J}#1}
\newcommand{\noem}{\not=\emptyset}
\newcommand{\DD}{\c{D}}
\newcommand{\BB}{\mathscr{B}}
\newcommand{\Pr}{\ff{P}}
\newcommand{\exact}[3]{0\to #1\to #2\to#3\to 0}
\newcommand{\qed}{\gudl{\ff{Q}.\ff{E}.\ff{D}.}}
\newcommand{\wt}[1]{\widetilde{#1}}
\newcommand{\wh}[1]{\widehat{#1}}
\newcommand{\spr}[1]{\Sper(#1)}
\newcommand{\LL}{\mathscr{L}}
\newcommand{\sp}[1]{\Spec(#1)}
\newcommand{\nuplong}[2]{#1\ -\!\!\!\rightharpoondown\!\leftharpoonup\!\to\! #2}
\newcommand{\ndownloong}[2]{#1 -\!\!\!-\!\!\!\rightharpoonup\!\leftharpoondown\!\!\!\longrightarrow \!#2}
\newcommand{\bop}{\bigoplus}
\newcommand{\eps}{\epsilon}
\newcommand{\K}{\mathbb{K}}
\newcommand{\lxen}{\langle x_1\cos x_n\rangle}
\newcommand{\Xen}{[X_1\cos X_n]}
\newcommand{\xen}{[x_1\cos x_n]}
\newcommand{\ip}{\langle -,- \rangle}
\newcommand{\ipr}[2]{\langle #1,#2 \rangle}
\newcommand{\vth}{\vartheta}
\newcommand{\pprod}{\prod_{v\in\ff{M}_\K}}
\newcommand{\pfam}[1]{(#1)_{v\in\ff{M}_\K}}
\newcommand{\pl}[1]{\ff{S}(#1)}
\newcommand{\plf}[1]{\ff{S}_{\o{fin}}(#1)}
\newcommand{\pli}[1]{\ff{S}_{\inf}(#1)}
\newcommand{\finfam}[1]{(#1)_{i=1}^n}
\newcommand{\fam}[1]{(#1)_{i\in I}}
\newcommand{\jfam}[1]{(#1)_{j\in J}}
\newcommand{\kfam}[1]{(#1)_{k\in K}}
\newcommand{\nfam}[1]{(#1)_{i=1}^n}
\newcommand{\nifam}[1]{(#1)_{n=0}^\infty}
\newcommand{\udl}[1]{\underline{#1}}
\newcommand{\Uij}{U_i\cap U_j}
\newcommand{\vpi}{\varphi_i}
\newcommand{\vpj}{\varphi_j}
\newcommand{\vph}{\varphi}
\newcommand{\psij}{\psi_{i,j}}
\newcommand{\CC}{\c{C}}
\newcommand{\nsum}{\sum_{n\in\N}}
\newcommand{\twist}[1]{\c{O}_{\mathbb{P}_k^n}(#1)}
\newcommand{\prj}[1]{\Proj (#1)}
\newcommand{\part}[2]{\frac{\partial #1}{\partial #2}}
\newcommand{\kxn}{k[x_0,\pts,x_n]}
\newcommand{\ques}{\gudl{\c{Q}\!uestion\colon}}
\newcommand{\quesn}[1]{\gudl{\c{Q}\!uestion\tx{}#1\colon}}
\newcommand{\answ}{\gudl{\sc{A}\!nswer\colon}}
\newcommand{\cons}{\color{orange}{\udl{\color{black}{\sc{C}\!onsiderations:}}}}
\newcommand{\ka}{\kappa}
\newcommand{\pr}{\mathfrak{p}}
\newcommand{\abs}[1]{\left| #1\right|}
\newcommand{\ab}{\left|-\right|}
\newcommand{\eps}{\epsilon}
\newcommand{\N}{\mathbb{N}}
\newcommand{\KX}{K[X]}
\newcommand{\cov}{\c{U}}
\newcommand{\ff}[1]{\mathfrak{#1}}
\newcommand{\legendre}[2]{\left(\frac{#1}{#2}\right)}
\newcommand{\half}{\frac{1}{2}}
\newcommand{\ANF}{K/\Q}
\newcommand{\GFF}{F/{\F_p(t)}}
\newcommand{\Os}{\mathcal{O}_{S,s}}
\newcommand{\lineb}{\sc{L}}
\newcommand{\cyclm}{\Q(\sqrt[m]{1})}
\newcommand{\cyclmK}{K(\sqrt[m]{1})}
\newcommand{\LX}{L[X]}
\newcommand{\GG}{\sc{G}}
\newcommand{\OS}{\mathcal{O}_S}
\newcommand{\bb}[1]{\textbf{#1}}
\newcommand{\OY}{\mathcal{O}_Y}
\newcommand{\vdp}{\sc{V}\!an\text{ }der\text{ }\sc{P}\!ut}
\newcommand{\weierstrass}{\sc{W}\!eierstraß}
\newcommand{\runge}{\sc{R}\!unge}
\newcommand{\laurent}{\sc{L}\!aurent}
\newcommand{\grothendieck}{\sc{G}\!rothendieck}
\newcommand{\noether}{\sc{N}\!oether}
\newcommand{\glX}{\Gamma(X,\mathcal{O}_X)}
\newcommand{\glY}{\Gamma(Y,\mathcal{O}_Y)}
\newcommand{\finKX}{f\in K[X]}
\newcommand{\ser}[1]{\sm{n=0}{\infty}{#1}}
\newcommand{\sm}[3]{\underset{#1}{\overset{#2}{\sum}} #3}
\newcommand{\cl}[1]{\overline{#1}}
\newcommand{\sube}{\subseteq}
\newcommand{\hk}{\hookrightarrow}
\newcommand{\OYy}{\mathcal{O}_{Y,y}}
\newcommand{\supe}{\supseteq}
\newcommand{\resy}{\kappa(y)}
\newcommand{\LK}{L/K}
\newcommand{\iso}{\overset{\sim}{\to}}
\newcommand{\isom}[3]{#1\overset{#2}{\iso}#3}
\newcommand{\kn}{k^n}
\newcommand{\kvec}{\textbf{vect}(k)}
\newcommand{\fkvec}{\textbf{vect}_{<\infty}(k)}
\newcommand{\fz}{f(X)=0}
\newcommand{\KIsom}{L\underset{K}{\overset{\sim}{\to}} L}
\newcommand{\Q}{\mathbb{Q}}
\newcommand{\R}{\mathbb{R}}
\newcommand{\L}{\mathbb{L}}
\newcommand{\C}{\mathbb{C}}
\newcommand{\F}{\mathbb{F}}
\newcommand{\A}{\mathbb{A}}
\newcommand{\ad}{\A_k}
\newcommand{\P}{\mathbb{P}}
\newcommand{\Z}{\mathbb{Z}}
\newcommand{\Zp}{\mathbb{Z}_p}
\newcommand{\Qp}{\mathbb{Q}_p}
\newcommand{\Qq}{\mathbb{Q}_q}
\newcommand{\Fp}{\mathbb{F}_p}
\newcommand{\I}{[0,1]}
\newcommand{\In}{[0,1]^n}
\newcommand{\Fpn}{\mathbb{F}_{p^n}}
\newcommand{\Fpm}{\mathbb{F}_{p^m}}
\newcommand{\Zn}{\mathbb{Z}/{n\mathbb{Z}}}
\newcommand{\Zx}[1]{\mathbb{Z}/{#1\mathbb{Z}}}
\newcommand{\md}[3]{#1\equiv #2\pmod{#3}}
\newcommand{\ga}{\Gal(L/K)}
\newcommand{\aga}[1]{\Gal(\overline{#1}/#1)}
\newcommand{\sga}[1]{\Gal(#1^{sep}/{#1})}
\newcommand{\gal}[2]{\Gal(#1/{#2})}
\newcommand{\c}[1]{\mathcal{#1}}
\newcommand{\skw}{\{\tau\}}
\newcommand{\limes}[1]{\underset{i\in I}{\varprojlim{#1_i}}}
\newcommand{\IGLn}{\mathbb{G}\mathbb{L}_n}
\newcommand{\IGL}{\mathbb{G}\mathbb{L}}
\newcommand{\Co}[2]{H^p(#1,#2)}
\newcommand{\OK}{\mathcal{O}_K}
\newcommand{\OL}{\mathcal{O}_L}
\newcommand{\res}[1]{\kappa(#1)}
\newcommand{\resx}{\kappa(x)}
\newcommand{\lTen}{\langle T_1\cos T_n\rangle}
\newcommand{\lXen}{\langle X_1\cos X_n\rangle}
\newcommand{\Te}{[T]}
\newcommand{\Tee}{[T_1,T_2]}
\newcommand{\Teee}{[T_1,T_2,T_3]}
\newcommand{\Ten}{[T_1\cos T_n]}
\newcommand{\Tem}{[T_1\cos T_m]}
\newcommand{\pts}{\cdots}
\newcommand{\pt}{\cdot}
\newcommand{\hm}[3]{\Hom_{#1}(#2,#3)}
\newcommand{\hom}{\Hom}
\newcommand{\dash}{\dashrightarrow}
\newcommand{\schemes}{\bb{(Sch)}}
\newcommand{\groups}{\bb{(Grp)}}
\newcommand{\rings}{\bb{(Ring)}}
\newcommand{\tx}[1]{\text{ #1 }}
\newcommand{\mm}{\ff{m}}
\newcommand{\zkinfsum}{\sum_{k=0}^\infty}
\newcommand{\ziinfsum}{\sum_{i=0}^\infty}
\newcommand{\zjinfsum}{\sum_{j=0}^\infty}
\newcommand{\asum}[1]{\sum_{\a\in\N^n}#1 X^\a}
\newcommand{\arr}[3]{#1\overset{#2}{\to} #3}
\newcommand{\nrm}[1]{\left\|#1\right\|}
\newcommand{\nr}{\nrm{-}}
\newcommand{\ext}[2]{#1/{#2}}
\newcommand{\lam}{\lambda}
\newcommand{\a}{\alpha}
\newcommand{\be}{\beta}
\newcommand{\g}{\gamma}
\newcommand{\de}{\delta}
\newcommand{\vp}{\varphi}
\newcommand{\p}{\phi}
\newcommand{\bul}{\bullet}
\newcommand{\t}{\tau}
\newcommand{\s}{\sigma}
\newcommand{\ze}{\zeta}
\newcommand{\T}{\mathbb{T}}
\newcommand{\tm}{\times}
\newcommand{\tms}{\times\pts\times}
\newcommand{\ot}{\otimes}
\newcommand{\ots}{\otimes\pts\otimes}
\newcommand{\pls}{+\pts +}
\newcommand{\cos}{,\pts,}
\newcommand{\op}{\oplus}
\newcommand{\ops}{\oplus\pts\oplus}
\newcommand{\cr}{\circ}
\newcommand{\crs}{\circ\pts\circ}
\newcommand{\sc}[1]{\mathscr{#1}}
\newcommand{\scal}[2]{\sc{#1}{\!#2}}
\newcommand{\ov}[2]{\begin{matrix}#1 \\ #2\end{matrix}}
\newcommand{\viele}{\color{orange}{\udl{\color{black}{\sc{V}\!iele\tx{}\sc{G}\!r\overset{{}_{,,\!}}{u}\textit{ß}e}}}}
\newcommand{\xst}{\color{orange}{\udl{\color{black}{X.S.T.\sim 小石头}}}}
\newcommand{\gudl}[1]{\color{orange}{\udl{\color{black}{#1}}}}
\newcommand{\Task}{\gudl{\sc{T}\!ask:}}
\newcommand{\Exer}{\gudl{\sc{E}\!exercise:}}
\newcommand{\Drinfeld}{\gudl{\sc{D}\!rinfeld:}}
\newcommand{\Goss}{\gudl{\sc{G}\!oss}}
\newcommand{\CK}{C/K}
\newcommand{\CS}{C/S}
\newcommand{\Ck}{C/k}
\newcommand{\Om}{\Omega}
\newcommand{\J}{\Jac_{\CS}^{g-1}}
\newcommand{\Fact}{\gudl{\sc{F}\!act\colon}}
\newcommand{\Factn}[1]{\gudl{\sc{F}\!act\tx{}#1\colon}}
\)
2019-11-03 21:36 - Triceratops in Beitrag No. 1 schreibt:
Diagramm ist kommutativ
$\iff (F \otimes F) \circ \Gamma(\mu) = \Gamma(\mu) \circ F$
$\iff (F \otimes F)(\Gamma(\mu)(T)) = \Gamma(\mu)(F(T))$
$\iff (F \otimes F)(T_1 + T_2) = F(T_1 + T_2)$
$\iff F(T_1) + F(T_2) = F(T_1 + T_2)$
Und das war's schon. Hallo Triceratops.
Vielen Dank für die Antwort.
An einen funktoriellen Beweis habe ich noch gar nicht gedacht, da ich zuerst diesen Beweis verstehen wollte. Dennoch übertrifft der funktorielle Beweis meinen Beweis (mal wieder ;D).
Könntest du ausführen wieso
$(F \otimes F)(\Gamma(\mu)(T)) = \Gamma(\mu)(F(T))$
$\iff (F \otimes F)(T_1 + T_2) = F(T_1 + T_2)$ gilt?
Ich kann das nicht nachvollziehen.
Nehmen wir an $(F \otimes F)(\Gamma(\mu)(T)) = \Gamma(\mu)(F(T))$ gilt.
Die linke Seite ist gleich $(F\ot F)(T_1+T_2)$. Die Rechte Seite ist gleich $F(T_1)+F(T_2)$, denn es gilt $\Gamma(\mu)(F(T))=F(T)\ot 1+ F(T)\ot 1=F(T_1)+F(T_2)$. Warum sollte sie gleich $F(T_1+T_2)$ sein? Das war auch meine ursprüngliche Frage, nur dass ich eine andere Notation verwendet habe.
\(\endgroup\)
|
Triceratops Aktiv Dabei seit: 28.04.2016
Mitteilungen: 5277
Herkunft: Berlin
 | Beitrag No.3, eingetragen 2019-11-04 07:35
Nein. Der Algebrahomomorphismus $\Gamma(\mu) : k[T] \to k[T_1,T_2]$ ist durch Fortsetzung von $T \mapsto T_1+T_2$ gegeben, also allgemein durch $f(T) \mapsto f(T_1+T_2)$. (Beachte, $f(T) \mapsto f(T_1)+f(T_2)$ gar kein Algebrahomomorphismus ist, schon $1 \mapsto 1$ ist falsch.)
|
xiao_shi_tou_ Senior Dabei seit: 12.08.2014
Mitteilungen: 1251
Herkunft: Augsburg
 | Beitrag No.4, vom Themenstarter, eingetragen 2019-11-06 18:15
\(\begingroup\)\(\DeclareMathOperator{\mer}{mer}
\DeclareMathOperator{\Sht}{Sht}
\DeclareMathOperator{\Ann}{Ann}
\DeclareMathOperator{\Et}{\acute{E}t}
\DeclareMathOperator{\et}{\acute{e}t}
\DeclareMathOperator{\etaleness}{\acute{e}taleness}
\newcommand{\h}{\o{h}}
\newcommand{\unr}[1]{#1^{\o{un}}}
\DeclareMathOperator{\H}{H}
\DeclareMathOperator{\ind}{ind}
\DeclareMathOperator{\etale}{\acute{e}tale}
\DeclareMathOperator{\Coker}{Coker}
\DeclareMathOperator{\Div}{Div}
\DeclareMathOperator{\Gl}{GL}
\DeclareMathOperator{\PGL}{PGL}
\DeclareMathOperator{\dom}{dom}
\DeclareMathOperator{\PSL}{PSL}
\DeclareMathOperator{\SL}{SL}
\DeclareMathOperator{\Res}{Res}
\DeclareMathOperator{\equi}{equi}
\DeclareMathOperator{\Hecke}{Hecke}
\DeclareMathOperator{\Aut}{Aut}
\DeclareMathOperator{\Jac}{Jac}
\DeclareMathOperator{\GL}{GL}
\DeclareMathOperator{\HF}{HF}
\DeclareMathOperator{\HS}{HS}
\DeclareMathOperator{\Ker}{Ker}
\DeclareMathOperator{\trdeg}{trdeg}
\DeclareMathOperator{\mod}{mod}
\DeclareMathOperator{\codim}{codim}
\DeclareMathOperator{\log}{log}
\DeclareMathOperator{\Log}{Log}
\DeclareMathOperator{\Nm}{Nm}
\DeclareMathOperator{\Con}{Con}
\DeclareMathOperator{\coker}{coker}
\DeclareMathOperator{\Ob}{Ob}
\DeclareMathOperator{\Emb}{Emb}
\DeclareMathOperator{\Tr}{Tr}
\DeclareMathOperator{\Sym}{Sym}
\DeclareMathOperator{\scale}{scale}
\DeclareMathOperator{\Sper}{Sper}
\DeclareMathOperator{\Sp}{Sp}
\DeclareMathOperator{\vol}{vol}
\DeclareMathOperator{\Cl}{Cl}
\DeclareMathOperator{\Ét}{Ét}
\DeclareMathOperator{\Zar}{Zar}
\DeclareMathOperator{\lcm}{lcm}
\DeclareMathOperator{\ord}{ord}
\newcommand{\End}{\mathop{\mathrm{End}}\nolimits}
\newcommand{\cEnd}{\mathop{\mathcal{E}\!\mathit{nd}}\nolimits}
\DeclareMathOperator{\supp}{supp}
\DeclareMathOperator{\rad}{rad}
\DeclareMathOperator{\lim}{lim}
\DeclareMathOperator{\char}{char}
\DeclareMathOperator{\Proj}{Proj}
\DeclareMathOperator{\proj}{proj}
\DeclareMathOperator{\length}{length}
\DeclareMathOperator{\locArt}{locArt}
\DeclareMathOperator{\Ass}{Ass}
\DeclareMathOperator{\id}{id}
\DeclareMathOperator{\im}{im}
\DeclareMathOperator{\Pic}{Pic}
\DeclareMathOperator{\Spec}{Spec}
\DeclareMathOperator{\Gal}{Gal}
\DeclareMathOperator{\Hom}{Hom}
\DeclareMathOperator{\ker}{ker}
\DeclareMathOperator{\ht}{ht}
\DeclareMathOperator{\Frob}{Frob}
\DeclareMathOperator{\Frac}{Frac}
\DeclareMathOperator{\det}{det}
\newcommand{\AA}{\sc{A}}
\newcommand{\Rem}{\gudl{\sc{R}\!emark}}
\newcommand{\Def}{\color{orange}{\underline{\color{black}{\sc{D}\!efinition}}}}
\newcommand{\Defn}[1]{\color{orange}{\underline{\color{black}{\sc{D}\!efinition\tx{}#1}}}}
\newcommand{\Prop}{\color{orange}{\underline{\color{black}{\sc{P}\!roposition}}}}
\newcommand{\Propn}[1]{\color{orange}{\underline{\color{black}{\sc{P}\!roposition\tx{}#1}}}}
\newcommand{\Claim}{\gudl{\sc{C}\!laim\colon}}
\newcommand{\Claimn}[1]{\gudl{\sc{C}\!laim \tx{}#1}}
\newcommand{\Thm}{\color{orange}{\underline{\color{black}{\sc{T}\!heorem}}}}
\newcommand{\Thmn}[1]{\gudl{\sc{T}\!heorem\tx{}#1}}
\newcommand{\O}{\c{O}}
\DeclareMathOperator{\Ouv}{Ouv}
\newcommand{\Cor}{\color{orange}{\underline{\color{black}{\sc{C}\!orollary}}}}
\newcommand{\Corn}[1]{\color{orange}{\underline{\color{black}{\sc{C}\!orollary\tx{}#1}}}}
\newcommand{\Fct}{\color{orange}{\underline{\color{black}{\sc{F}\!act}}}}
\newcommand{\Fctn}[1]{\color{orange}{\underline{\color{black}{\sc{F}\!act\tx{}#1}}}}
\newcommand{\Lem}{\color{orange}{\underline{\color{black}{\sc{L}\!emma}}}}
\newcommand{\Lemn}[1]{\color{orange}{\underline{\color{black}{\sc{L}\!emma\tx{}#1}}}}
\newcommand{\Exp}{\color{orange}{\underline{\color{black}{\sc{E}\!xample}}}}
\newcommand{\Expn}[1]{\color{orange}{\underline{\color{black}{\sc{E}\!xample\tx{}#1}}}}
\newcommand{\Rem}{\gudl{\sc{R}\!emark\colon}}
\newcommand{\Remn}[1]{\gudl{\sc{R}\!emark #1\colon}}
\newcommand{\brc}[1]{[\![#1]\!]}
\newcommand{\qst}{{}^{\color{red}{[?]}}}
\newcommand{\qstn}[1]{{}^{\color{red}{[?,#1]}}}
\newcommand{\sto}{\overset{\sim}{\to}}
\newcommand{\srj}{\twoheadrightarrow}
\newcommand{\Ga}{\mathbb{G}_a}
\newcommand{\G}{\mathbb{G}}
\newcommand{\B}{\mathbb{B}}
\newcommand{\Gm}{\G_m}
\newcommand{\d}[1]{_{#1}}
\newcommand{\nz}{\not=0}
\newcommand{\x}{(x)}
\newcommand{\y}{(y)}
\newcommand{\r}[1]{\mid_{#1}}
\newcommand{\ij}{(i,j)}
\newcommand{\o}[1]{\operatorname{#1}}
\newcommand{\ne}{\not=\emptyset}
\newcommand{\ISLn}{\mathbb{S}\mathbb{L}_n}
\newcommand{\tfae}{\textbf{T.F.A.E.}}
\newcommand{\ndownlong}[2]{#1\ -\!\!\!\rightharpoonup\!\leftharpoondown\!\to\! #2}
\newcommand{\OC}{\c{O}_C}
\newcommand{\OF}{\c{O}_F}
\newcommand{\gsp}[1]{\udl{\Spec}_S(#1)}
\newcommand{\shso}{\udl{\text{Sheaves on}}}
\newcommand{\shs}{\udl{\text{Sheaves}}}
\newcommand{\ush}[1]{\udl{\text{Sheaf}}(#1)}
\newcommand{\sh}{\udl{\text{Sheaf}}}
\newcommand{\rr}{/\!\!/}
\newcommand{\EE}{\mathscr{E}}
\newcommand{\V}{\mathbb{V}}
\newcommand{\ddd}{(d,d_1,d_2)}
\newcommand{\Vd}{V_{d,d_1,d_2}}
\newcommand{\xy}{(x,y)}
\newcommand{\OX}{\c{O}_X}
\newcommand{\Ox}{\c{O}_{X,x}}
\newcommand{\KK}{\mathbb{K}}
\newcommand{\lims}{\limsup_{n\to \infty}}
\newcommand{\proof}{\gudl{\mathscr{P}\!roof}\colon}
\newcommand{\proofofprop}[1]{\underline{\color{orange}{\mathscr{P}\!roof\tx{}of\tx{}\sc{P}\!roposition\tx{}#1}\colon}}
\newcommand{\proofofcor}[1]{\underline{\color{orange}{\mathscr{P}\!roof\tx{}of\tx{}\sc{C}\!orollary\tx{}#1}\colon}}
\newcommand{\proofofthm}{\gudl{\sc{P}\!roof\tx{}of\tx{}\sc{T}\!heorem\colon}}
\newcommand{\proofofthmn}[1]{\gudl{\sc{P}\!roof\tx{}of\tx{}\sc{T}\!heorem\tx{}#1\colon}}
\newcommand{\Bew}{\underline{\color{orange}{\mathscr{B}\!eweis}\colon}}
\newcommand{\defeq}{\overset{\mathscr{D}\mathscr{e}\mathscr{f}.}{=\!=}}
\newcommand{\set}[2]{\{#1\mid #2\}}
\newcommand{\SS}{\mathscr{S}}
\newcommand{\FF}{\mathscr{F}}
\newcommand{\dyadksum}[1]{\sum_{I\in \DD_k,I\sube J}#1}
\newcommand{\noem}{\not=\emptyset}
\newcommand{\DD}{\sc{D}}
\newcommand{\BB}{\mathscr{B}}
\newcommand{\KK}{\sc{K}}
\newcommand{\Pr}{\ff{P}}
\newcommand{\exact}[3]{0\to #1\to #2\to#3\to 0}
\newcommand{\qed}{\gudl{\ff{Q}.\ff{E}.\ff{D}.}}
\newcommand{\wt}[1]{\widetilde{#1}}
\newcommand{\wh}[1]{\widehat{#1}}
\newcommand{\spr}[1]{\Sper(#1)}
\newcommand{\LL}{\mathscr{L}}
\newcommand{\sp}[1]{\Spec(#1)}
\newcommand{\nuplong}[2]{#1\ -\!\!\!\rightharpoondown\!\leftharpoonup\!\to\! #2}
\newcommand{\ndownloong}[2]{#1 -\!\!\!-\!\!\!\rightharpoonup\!\leftharpoondown\!\!\!\longrightarrow \!#2}
\newcommand{\bop}{\bigoplus}
\newcommand{\eps}{\epsilon}
\newcommand{\K}{\mathbb{K}}
\newcommand{\lxen}{\langle x_1\cos x_n\rangle}
\newcommand{\Xen}{[X_1\cos X_n]}
\newcommand{\xen}{[x_1\cos x_n]}
\newcommand{\ip}{\langle -,- \rangle}
\newcommand{\ipr}[2]{\langle #1,#2 \rangle}
\newcommand{\vth}{\vartheta}
\newcommand{\pprod}{\prod_{v\in\ff{M}_\K}}
\newcommand{\pfam}[1]{(#1)_{v\in\ff{M}_\K}}
\newcommand{\pl}[1]{\ff{S}(#1)}
\newcommand{\plf}[1]{\ff{S}_{\o{fin}}(#1)}
\newcommand{\pli}[1]{\ff{S}_{\infty}(#1)}
\newcommand{\finfam}[1]{(#1)_{i=1}^n}
\newcommand{\fam}[1]{(#1)_{i\in I}}
\newcommand{\jfam}[1]{(#1)_{j\in J}}
\newcommand{\kfam}[1]{(#1)_{k\in K}}
\newcommand{\nfam}[1]{(#1)_{i=1}^n}
\newcommand{\nifam}[1]{(#1)_{n=0}^\infty}
\newcommand{\udl}[1]{\underline{#1}}
\newcommand{\Uij}{U_i\cap U_j}
\newcommand{\vpi}{\varphi_i}
\newcommand{\vpj}{\varphi_j}
\newcommand{\vph}{\varphi}
\newcommand{\psij}{\psi_{i,j}}
\newcommand{\CC}{\c{C}}
\newcommand{\nsum}{\sum_{n\in\N}}
\newcommand{\twist}[1]{\c{O}_{\mathbb{P}_k^n}(#1)}
\newcommand{\prj}[1]{\Proj (#1)}
\newcommand{\part}[2]{\frac{\partial #1}{\partial #2}}
\newcommand{\kxn}{k[x_0,\pts,x_n]}
\newcommand{\ques}{\gudl{\c{Q}\!uestion\colon}}
\newcommand{\quesn}[1]{\gudl{\c{Q}\!uestion\tx{}#1\colon}}
\newcommand{\answ}{\gudl{\sc{A}\!nswer\colon}}
\newcommand{\cons}{\color{orange}{\udl{\color{black}{\sc{C}\!onsiderations:}}}}
\newcommand{\ka}{\kappa}
\newcommand{\pr}{\mathfrak{p}}
\newcommand{\abs}[1]{\left| #1\right|}
\newcommand{\ab}{\left|-\right|}
\newcommand{\eps}{\epsilon}
\newcommand{\N}{\mathbb{N}}
\newcommand{\KX}{K[X]}
\newcommand{\cov}{\c{U}}
\newcommand{\ff}[1]{\mathfrak{#1}}
\newcommand{\legendre}[2]{\left(\frac{#1}{#2}\right)}
\newcommand{\half}{\frac{1}{2}}
\newcommand{\ANF}{K/\Q}
\newcommand{\GFF}{F/{\F_p(t)}}
\newcommand{\Os}{\mathcal{O}_{S,s}}
\newcommand{\lineb}{\sc{L}}
\newcommand{\cyclm}{\Q(\sqrt[m]{1})}
\newcommand{\cyclmK}{K(\sqrt[m]{1})}
\newcommand{\LX}{L[X]}
\newcommand{\GG}{\sc{G}}
\newcommand{\OS}{\mathcal{O}_S}
\newcommand{\OK}{\c{O}_K}
\newcommand{\OF}{\c{O}_F}
\newcommand{\OL}{\c{O}_L}
\newcommand{\Ok}{\c{O}_k}
\newcommand{\OZ}{\c{O}_Z}
\newcommand{\O}{\c{O}}
\newcommand{\bb}[1]{\textbf{#1}}
\newcommand{\OY}{\mathcal{O}_Y}
\newcommand{\vdp}{\sc{V}\!an\text{ }der\text{ }\sc{P}\!ut}
\newcommand{\weierstrass}{\sc{W}\!eierstraß}
\newcommand{\runge}{\sc{R}\!unge}
\newcommand{\laurent}{\sc{L}\!aurent}
\newcommand{\grothendieck}{\sc{G}\!rothendieck}
\newcommand{\noether}{\sc{N}\!oether}
\newcommand{\glX}{\Gamma(X,\mathcal{O}_X)}
\newcommand{\glY}{\Gamma(Y,\mathcal{O}_Y)}
\newcommand{\finKX}{f\in K[X]}
\newcommand{\ser}[1]{\sm{n=0}{\infty}{#1}}
\newcommand{\sm}[3]{\underset{#1}{\overset{#2}{\sum}} #3}
\newcommand{\cl}[1]{\overline{#1}}
\newcommand{\sube}{\subseteq}
\newcommand{\hk}{\hookrightarrow}
\newcommand{\OYy}{\mathcal{O}_{Y,y}}
\newcommand{\supe}{\supseteq}
\newcommand{\resy}{\kappa(y)}
\newcommand{\LK}{L/K}
\newcommand{\isom}[3]{#1\overset{#2}{\iso}#3}
\newcommand{\kn}{k^n}
\newcommand{\kvec}{\textbf{vect}(k)}
\newcommand{\fkvec}{\textbf{vect}_{<\infty}(k)}
\newcommand{\fz}{f(X)=0}
\newcommand{\KIsom}{L\underset{K}{\overset{\sim}{\to}} L}
\newcommand{\Q}{\mathbb{Q}}
\newcommand{\R}{\mathbb{R}}
\newcommand{\L}{\mathbb{L}}
\newcommand{\C}{\mathbb{C}}
\newcommand{\F}{\mathbb{F}}
\newcommand{\A}{\mathbb{A}}
\newcommand{\ad}{\A_k}
\newcommand{\P}{\mathbb{P}}
\newcommand{\Z}{\mathbb{Z}}
\newcommand{\Zp}{\mathbb{Z}_p}
\newcommand{\Qp}{\mathbb{Q}_p}
\newcommand{\Qq}{\mathbb{Q}_q}
\newcommand{\Fp}{\mathbb{F}_p}
\newcommand{\I}{[0,1]}
\newcommand{\In}{[0,1]^n}
\newcommand{\Fpn}{\mathbb{F}_{p^n}}
\newcommand{\Fpm}{\mathbb{F}_{p^m}}
\newcommand{\Zn}{\mathbb{Z}/{n\mathbb{Z}}}
\newcommand{\Zx}[1]{\mathbb{Z}/{#1\mathbb{Z}}}
\newcommand{\md}[3]{#1\equiv #2\pmod{#3}}
\newcommand{\ga}{\Gal(L/K)}
\newcommand{\aga}[1]{\Gal(\overline{#1}/#1)}
\newcommand{\sga}[1]{\Gal(#1^{sep}/{#1})}
\newcommand{\gal}[2]{\Gal(#1/{#2})}
\newcommand{\c}[1]{\mathcal{#1}}
\newcommand{\skw}{\{\tau\}}
\newcommand{\limes}[1]{\underset{i\in I}{\varprojlim{#1_i}}}
\newcommand{\IGLn}{\mathbb{G}\mathbb{L}_n}
\newcommand{\IGL}{\mathbb{G}\mathbb{L}}
\newcommand{\Co}[2]{H^p(#1,#2)}
\newcommand{\OK}{\mathcal{O}_K}
\newcommand{\OL}{\mathcal{O}_L}
\newcommand{\res}[1]{\kappa(#1)}
\newcommand{\resx}{\kappa(x)}
\newcommand{\lTen}{\langle T_1\cos T_n\rangle}
\newcommand{\lXen}{\langle X_1\cos X_n\rangle}
\newcommand{\Te}{[T]}
\newcommand{\Tee}{[T_1,T_2]}
\newcommand{\Teee}{[T_1,T_2,T_3]}
\newcommand{\Ten}{[T_1\cos T_n]}
\newcommand{\Tem}{[T_1\cos T_m]}
\newcommand{\pts}{\cdots}
\newcommand{\pt}{\cdot}
\newcommand{\hm}[3]{\Hom_{#1}(#2,#3)}
\newcommand{\hom}{\Hom}
\newcommand{\dash}{\dashrightarrow}
\newcommand{\schemes}{\bb{(Sch)}}
\newcommand{\groups}{\bb{(Grp)}}
\newcommand{\rings}{\bb{(Ring)}}
\newcommand{\tx}[1]{\text{ #1 }}
\newcommand{\mm}{\ff{m}}
\newcommand{\zkinfsum}{\sum_{k=0}^\infty}
\newcommand{\ziinfsum}{\sum_{i=0}^\infty}
\newcommand{\zjinfsum}{\sum_{j=0}^\infty}
\newcommand{\asum}[1]{\sum_{\a\in\N^n}#1 X^\a}
\newcommand{\arr}[3]{#1\overset{#2}{\to} #3}
\newcommand{\nrm}[1]{\left\|#1\right\|}
\newcommand{\nr}{\nrm{-}}
\newcommand{\ext}[2]{#1/{#2}}
\newcommand{\lam}{\lambda}
\newcommand{\a}{\alpha}
\newcommand{\be}{\beta}
\newcommand{\g}{\gamma}
\newcommand{\de}{\delta}
\newcommand{\vp}{\varphi}
\newcommand{\p}{\phi}
\newcommand{\bul}{\bullet}
\newcommand{\t}{\tau}
\newcommand{\s}{\sigma}
\newcommand{\ze}{\zeta}
\newcommand{\T}{\mathbb{T}}
\newcommand{\tm}{\times}
\newcommand{\tms}{\times\pts\times}
\newcommand{\ot}{\otimes}
\newcommand{\ots}{\otimes\pts\otimes}
\newcommand{\pls}{+\pts +}
\newcommand{\cos}{,\pts,}
\newcommand{\op}{\oplus}
\newcommand{\ops}{\oplus\pts\oplus}
\newcommand{\cr}{\circ}
\newcommand{\crs}{\circ\pts\circ}
\newcommand{\sc}[1]{\mathscr{#1}}
\newcommand{\scal}[2]{\sc{#1}{\!#2}}
\newcommand{\ov}[2]{\begin{matrix}#1 \\ #2\end{matrix}}
\newcommand{\viele}{\color{orange}{\udl{\color{black}{\sc{V}\!iele\tx{}\sc{G}\!r\overset{{}_{,,\!}}{u}\textit{ß}e}}}}
\newcommand{\xst}{\color{orange}{\udl{\color{black}{X.S.T.\sim 小石头}}}}
\newcommand{\gudl}[1]{\color{orange}{\udl{\color{black}{#1}}}}
\newcommand{\Task}{\gudl{\sc{T}\!ask:}}
\newcommand{\Exer}{\gudl{\sc{E}\!exercise:}}
\newcommand{\Drinfeld}{\gudl{\sc{D}\!rinfeld:}}
\newcommand{\Goss}{\gudl{\sc{G}\!oss}}
\newcommand{\CK}{C/K}
\newcommand{\CS}{C/S}
\newcommand{\Ck}{C/k}
\newcommand{\Om}{\Omega}
\newcommand{\J}{\Jac_{\CS}^{g-1}}
\newcommand{\Fact}{\gudl{\sc{F}\!act\colon}}
\newcommand{\Factn}[1]{\gudl{\sc{F}\!act\tx{}#1\colon}}
\newcommand{\sep}[1]{#1^{\o{sep}}}
\newcommand{\abel}[1]{#1^{\o{ab}}}
\newcommand{\corres}[2]{\{#1\}\leftrightarrows\{#2\}}
\newcommand{\units}[1]{#1^{\tm}}
\newcommand{\line}{\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!}
\newcommand{\fin}[1]{#1^{\o{fin}}}
\newcommand{\infin}[1]{#1^{\infty}}
\newcommand{\Ql}{\Q_{\ell}}
\newcommand{\dbquot}[3]{{}_{#2}\backslash#1/_{#3}}
\)
2019-11-04 07:35 - Triceratops in Beitrag No. 3 schreibt:
Nein. Der Algebrahomomorphismus $\Gamma(\mu) : k[T] \to k[T_1,T_2]$ ist durch Fortsetzung von $T \mapsto T_1+T_2$ gegeben, also allgemein durch $f(T) \mapsto f(T_1+T_2)$. (Beachte, $f(T) \mapsto f(T_1)+f(T_2)$ gar kein Algebrahomomorphismus ist, schon $1 \mapsto 1$ ist falsch.) Oh Man! Stimmt! $\arr{k[T]}{F(T)}{\arr{k[T]}{\Gamma(\mu)}{k[T_1,T_2]}}$ ist ja durch $T\mapsto F(T)\mapsto F(T_1+F_2)$ gegeben. Wo war mein Kopf in dem Moment.. Ich bin froh, dass ich es jetzt verstanden habe, aber noch besser ist, dass der Beweis mit der funktoriellen Definition so einfach ist. Komischerweise wird es aber in allen Büchern zum Thema die ich habe mit dem "umständlichen" Beweis gemacht.
Vielen Dank\(\endgroup\)
|
|