Die Mathe-Redaktion - 27.05.2018 15:36 - Registrieren/Login
Auswahl
ListenpunktHome
ListenpunktAktuell und Interessant ai
ListenpunktArtikelübersicht/-suche
ListenpunktAlle Links / Mathe-Links
ListenpunktFach- & Sachbücher
ListenpunktMitglieder / Karte
ListenpunktRegistrieren/Login
ListenpunktArbeitsgruppen
ListenpunktSchwätz / Top 15
ListenpunktWerde Mathe-Millionär!
ListenpunktAnmeldung MPCT Juli
ListenpunktFormeleditor fedgeo
Aktion im Forum
Suche
Stichwortsuche in Artikeln und Links von Matheplanet
Suchen im Forum
Suchtipps

Bücher
Englische Bücher
Software
Suchbegriffe:
Mathematik bei amazon
Naturwissenschaft & Technik
In Partnerschaft mit Amazon.de
Kontakt
Mail an Matroid
[Keine Übungsaufgaben!]
Impressum

Bitte beachten Sie unsere Nutzungsbedingungen, die Distanzierung, unsere Datenschutzerklärung und
die Forumregeln.

Sie können Mitglied werden. Mitglieder können den Matheplanet-Newsletter bestellen, der etwa alle 2 Monate erscheint.

Der Newsletter Okt. 2017

Für Mitglieder
Mathematisch für Anfänger
Wer ist Online
Aktuell sind 107 Gäste und 7 Mitglieder online.

Sie können Mitglied werden:
Klick hier.

Über Matheplanet
 
[Zurück zum Index der Buchbesprechungen]

Lineare Algebra

Anton, Howard

Buchcover
Kurzbeschreibung
Howard Antons Lehrbuch-in sieben englischsprachigen Ausgaben bereits praktisch erprobt-führt Studenten der Anfangssemester in das Gebiet der Linearen Algebra ein. Mit großem didaktischen Geschick strukturiert und formuliert, zudem angereichert mit zahlreichen Übungsaufgaben, ist dies ein umfassendes Grundlagenwerk und eine ausführliche Einführungen in das Fachgebiet. Kenntnisse der Analysis werden für das Verständnis nicht generell vorausgesetzt und sind nur für einige Beispiele nötig. Pädagogisch erfahren, behandelt der Autor grundlegende Beweise im Text; für den interessierten Leser unverzichtbare Beweise finden sich am Ende der entsprechenden Kapitel. Vorzug des Buches ist die Darstellung der Zusammenhänge zwischen den einzelnen Stoffgebieten, gibt einen weitgreifenden Überblick - linearen Gleichungssystemen, Matrizen, Determinanten, Vektoren, linearen Transformationen und Eigenwerten. Der Autor lehrt an der Drexel University Mathematik.

Kritik
Dieses Buch ist für Leute geschrieben, die ganz am Anfang der linearen Algebra stehen. Die Betonung muss bei dem Buch aber auf "linear" gelegt werden, denn Begriffe wie "Körper", "Ring" oder "Gruppe" kommen in dem Buch nicht vor. Es werden dafür umso ausführlicher Matrizenrechnung und Geometrie behandelt. Aber man stößt trotz der fast 700 Seiten schnell an die inhaltlichen Grenzen des Buches. Das Buch ist exzellent dafür geeignet, einen Einstieg in ein neues Thema zu finden. Wenn man diesen hat, sollte man aber eventuell ein weiteres Buch hinzuziehen.


Hinzugefügt am: 2005-08-16
Kritiker: Gonzbert
Bewertung

Zugehöriger Link: Amazon.de
Gelesen: 6010




Durchschnittsbewertung: 9 Bewertungen

Suchbegriffe : Lineare Algebra :: Mathematik :

Kommentar schreiben   Ein besseres Review schreiben

Weitere Kommentare:
Lineare Algebra
Bewertung von weserus am 04.02.2006

weserus schreibt:

Eine gelungene Einführung in die Lineare Algebra. Das Werk von Howard
Anton schafft eine gute Grundlage für diese Theorie der Mathematik und
gibt dem Leser-der wie ich fast ausschliesslich ein Selbststudium
führt-auch gute ausführliche Übungen an die Hand. Zu Recht steht des-
halb auch unter dem Titel: Lineare Algebra der Untertitel:Einführung,
Grundlagen und Übungen. Im Vorwort heisst es zu Recht:
"Anton folgt in der Anordnung der Kapitel dem 'pädagogischen Axiom',
stets vom Bekannten zum Unbekannten, vom Konkreten zum Abstrakten
fortzuschreiten und der Anschaulichkeit zu dienen." In der Linearen
Algebra, mit dem der Studienanfänger beginnt, halte ich dies nicht
für verkehrt. Zu vielen deutschen Professoren und Autoren fehlt
didaktisches und pädagogisches Geschick, was Howard Anton zweifelsfrei hat.
Ich kann deshalb das Werk Studienanfängern wärmstens empfehlen.

Die Übersicht der Kapitel:
1.Lineare Gleichungssysteme und Matrizen
2.Determinanten
3.Vektoren in der Ebene und im Raum
4.Euklidische Vektorräume
5.Allgemeine Vektorräume
6.Vektorräume mit Skalarprodukt
7.Eigenwerte und Eigenvektoren
8.Lineare Transformationen
9.Anwendungen und Ergänzungen
10.Komplexe Vektorräume

Aus dem 9. Kapitel hat mir besonders gut gefallen, wie Anton
über die Orthogonalisierung und das Skalarprodukt Approximations-
probleme und die Fourierreihen behandelt und einführt.
Es ist mal ein anderer Weg.
Richtig ist-wie Gonzbert- ausführt, dass weitergehende Themen
wie Gruppen, Körper, Ringe usw. nicht behandelt werden.
Allein wegen des "pädagogischen Axioms" gebe ich dem Werk als
Einführung in die Lineare Algebra die 'volle Punktzahl'.



(Dieser Kommentar wurde zu dieser Besprechung geschrieben)

Lineare Algebra
Bewertung von needle am 29.06.2006


(Dieser Kommentar wurde zu dieser Besprechung geschrieben)

Lineare Algebra
Bewertung von Berufspenner am 20.11.2006


(Dieser Kommentar wurde zu dieser Besprechung geschrieben)

Lineare Algebra
Bewertung von chrisr am 19.08.2007


(Dieser Kommentar wurde zu dieser Besprechung geschrieben)

Lineare Algebra
Bewertung von d_inos am 03.05.2008


(Dieser Kommentar wurde zu dieser Besprechung geschrieben)

Lineare Algebra
Bewertung von Fragezeichen am 31.08.2008


(Dieser Kommentar wurde zu dieser Besprechung geschrieben)

Lineare Algebra
Bewertung von Seestern am 25.03.2009


(Dieser Kommentar wurde zu dieser Besprechung geschrieben)

Lineare Algebra
Bewertung von Tsantsa am 31.01.2012


(Dieser Kommentar wurde zu dieser Besprechung geschrieben)

Neuer Kommentar zu:
Lineare Algebra


Benutzername: Anonymous [ Mitglied werden ]


Bewertung: 1=schlechteste, 10=beste Bewertung

Kommentar:

Bitte eine Wertung, einen Kommentar oder beides abgeben.

Autoren: A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z    
Themengruppen:
Titelsuche:  
[Schreibe eine Buchbesprechung]
[Ein Buch, das hier besprochen sein sollte]
[Fragen? -> Forum Bücher & Links]

[Zum Index der Buchbesprechungen]

 
All logos and trademarks in this site are property of their respective owner. The comments are property of their posters, all the rest © 2001-2018 by Matroids Matheplanet
This web site was made with PHP-Nuke, a web portal system written in PHP. PHP-Nuke is Free Software released under the GNU/GPL license.
Ich distanziere mich von rechtswidrigen oder anstößigen Inhalten, die sich trotz aufmerksamer Prüfung hinter hier verwendeten Links verbergen mögen.
Lesen Sie die Nutzungsbedingungen, die Distanzierung, die Datenschutzerklärung und das Impressum.
[Seitenanfang]