Matroids Matheplanet Forum Index
Moderiert von Bilbo
Theoretische Informatik » Berechenbarkeitstheorie » Primitive Rekursion
Druckversion
Druckversion
Antworten
Antworten
Autor
Universität/Hochschule Primitive Rekursion
sb997
Junior Letzter Besuch: vor mehr als 3 Monaten
Dabei seit: 30.07.2020
Mitteilungen: 13
Zum letzten BeitragZum nächsten BeitragZum vorigen BeitragZum erstem Beitrag  Themenstart: 2020-09-15


Hallo,
ich studiere Medizininformatik und muss mich deshalb auch mit dem Modul "Theoretische Informatik" auseinander setzen.
Ich habe folgende Aufgaben bekommen zur Primitiven Rekursion.

Welche Funktionen entstehen durch primitive Rekursion aus:

\(\text{1. } \mathit{h=zero}_2, \quad \mathit{g=succ}_0\mathit{zero}_0\)
\(\text{2. } \mathit{g=zero}_0, \quad h=f_1\bigl(p_1^{(2)}(t,f_2(t))\bigr)\)
\(\text{3. } \mathit{g(x,y)=x}, \quad h(x,y,z,f_5(x,y,z))=p_2^4(h)=y\)

Ich sehe irgendwie bei primitiver Rekursion nicht wirklich durch.
Ich weiß, es gibt als Definition Projektion, Nachfolgerfunktion und Nullfunktion.
Da ich aber h und g schon gegeben habe und somit den Weg sozusagen rückwärts laufen muss, um zur Funktion zu kommen, weiß ich nicht so Recht wie ich das vorgehen soll.

Könnte mir bitte einer das anhand einer der Beispiele erklären bitte?

Vielen Dank schon mal!!



Eine Notiz zu diese Forumbeitrag schreiben Notiz   Profil  Quote  Link auf diesen Beitrag Link
sb997 wird per Mail über neue Antworten informiert.
Neues Thema [Neues Thema] Antworten [Antworten]    Druckversion [Druckversion]

 


Wechsel in ein anderes Forum:
 Suchen    
 
All logos and trademarks in this site are property of their respective owner. The comments are property of their posters, all the rest © 2001-2021 by Matroids Matheplanet
This web site was originally made with PHP-Nuke, a former web portal system written in PHP that seems no longer to be maintained nor supported. PHP-Nuke is Free Software released under the GNU/GPL license.
Ich distanziere mich von rechtswidrigen oder anstößigen Inhalten, die sich trotz aufmerksamer Prüfung hinter hier verwendeten Links verbergen mögen.
Lesen Sie die Nutzungsbedingungen, die Distanzierung, die Datenschutzerklärung und das Impressum.
[Seitenanfang]