|
Autor |
Abbildung auf den komplexen Zahlen fortsetzen |
|
LukasNiessen
Wenig Aktiv  Dabei seit: 30.09.2019 Mitteilungen: 156
Wohnort: Deutschland
 | Themenstart: 2023-05-18
|
\(\begingroup\)\(\newcommand{\defi}{\overset{\mathscr{D}\mathscr{e}\mathscr{f}.}{=\!=}}
\newcommand{\defeq}{\overset{\mathscr{D}\mathscr{e}\mathscr{f}.}{=\!=}}
\newcommand{\IN}{\mathbb{N}}
\newcommand{\IZ}{\mathbb{Z}}
\newcommand{\IQ}{\mathbb{Q}}
\newcommand{\IR}{\mathbb{R}}
\newcommand{\IC}{\mathbb{C}}
\DeclareMathOperator{\mer}{mer}
\DeclareMathOperator{\Sht}{Sht}
\DeclareMathOperator{\Ann}{Ann}
\DeclareMathOperator{\Et}{\acute{E}t}
\DeclareMathOperator{\et}{\acute{e}t}
\newcommand{\h}{\o{h}}
\DeclareMathOperator{\ind}{ind}
\DeclareMathOperator{\etale}{\acute{e}tale}
\DeclareMathOperator{\Coker}{Coker}
\DeclareMathOperator{\Div}{Div}
\DeclareMathOperator{\Gl}{GL}
\DeclareMathOperator{\PGL}{PGL}
\DeclareMathOperator{\dom}{dom}
\DeclareMathOperator{\PSL}{PSL}
\DeclareMathOperator{\SL}{SL}
\DeclareMathOperator{\Res}{Res}
\DeclareMathOperator{\equi}{equi}
\DeclareMathOperator{\Hecke}{Hecke}
\DeclareMathOperator{\Aut}{Aut}
\DeclareMathOperator{\Jac}{Jac}
\DeclareMathOperator{\GL}{GL}
\DeclareMathOperator{\HF}{HF}
\DeclareMathOperator{\HS}{HS}
\DeclareMathOperator{\Ker}{Ker}
\DeclareMathOperator{\trdeg}{trdeg}
\DeclareMathOperator{\mod}{mod}
\DeclareMathOperator{\codim}{codim}
\DeclareMathOperator{\log}{log}
\DeclareMathOperator{\Log}{Log}
\DeclareMathOperator{\Nm}{Nm}
\DeclareMathOperator{\Con}{Con}
\DeclareMathOperator{\coker}{coker}
\DeclareMathOperator{\Ob}{Ob}
\DeclareMathOperator{\Emb}{Emb}
\DeclareMathOperator{\Tr}{Tr}
\DeclareMathOperator{\Sym}{Sym}
\DeclareMathOperator{\scale}{scale}
\DeclareMathOperator{\Sper}{Sper}
\DeclareMathOperator{\Sp}{Sp}
\DeclareMathOperator{\vol}{vol}
\DeclareMathOperator{\Cl}{Cl}
\DeclareMathOperator{\Ét}{Ét}
\DeclareMathOperator{\lcm}{lcm}
\DeclareMathOperator{\ord}{ord}
\DeclareMathOperator{\End}{End}
\DeclareMathOperator{\supp}{supp}
\DeclareMathOperator{\rad}{rad}
\DeclareMathOperator{\lim}{lim}
\DeclareMathOperator{\char}{char}
\DeclareMathOperator{\Proj}{Proj}
\DeclareMathOperator{\proj}{proj}
\DeclareMathOperator{\length}{length}
\DeclareMathOperator{\locArt}{locArt}
\DeclareMathOperator{\***}{***}
\DeclareMathOperator{\id}{id}
\DeclareMathOperator{\im}{im}
\DeclareMathOperator{\Pic}{Pic}
\DeclareMathOperator{\Spec}{Spec}
\DeclareMathOperator{\Gal}{Gal}
\DeclareMathOperator{\Hom}{Hom}
\DeclareMathOperator{\ker}{ker}
\DeclareMathOperator{\ht}{ht}
\DeclareMathOperator{\Frob}{Frob}
\DeclareMathOperator{\Frac}{Frac}
\DeclareMathOperator{\det}{det}
\newcommand{\AA}{\sc{A}}
\newcommand{\Rem}{\gudl{\sc{R}\!emark}}
\newcommand{\Def}{\color{orange}{\underline{\color{black}{\sc{D}\!efinition}}}}
\newcommand{\Defn}[1]{\color{orange}{\underline{\color{black}{\sc{D}\!efinition\tx{}#1}}}}
\newcommand{\Prop}{\color{orange}{\underline{\color{black}{\sc{P}\!roposition}}}}
\newcommand{\Propn}[1]{\color{orange}{\underline{\color{black}{\sc{P}\!roposition\tx{}#1}}}}
\newcommand{\Claim}{\gudl{\sc{C}\!laim\colon}}
\newcommand{\Claimn}[1]{\gudl{\sc{C}\!laim \tx{}#1}}
\newcommand{\Thm}{\color{orange}{\underline{\color{black}{\sc{T}\!heorem}}}}
\newcommand{\Thmn}[1]{\gudl{\sc{T}\!heorem\tx{}#1}}
\newcommand{\O}{\c{O}}
\DeclareMathOperator{\Ouv}{Ouv}
\newcommand{\Cor}{\color{orange}{\underline{\color{black}{\sc{C}\!orollary}}}}
\newcommand{\Corn}[1]{\color{orange}{\underline{\color{black}{\sc{C}\!orollary\tx{}#1}}}}
\newcommand{\Fct}{\color{orange}{\underline{\color{black}{\sc{F}\!act}}}}
\newcommand{\Fctn}[1]{\color{orange}{\underline{\color{black}{\sc{F}\!act\tx{}#1}}}}
\newcommand{\Lem}{\color{orange}{\underline{\color{black}{\sc{L}\!emma}}}}
\newcommand{\Lemn}[1]{\color{orange}{\underline{\color{black}{\sc{L}\!emma\tx{}#1}}}}
\newcommand{\Exp}{\color{orange}{\underline{\color{black}{\sc{E}\!xample}}}}
\newcommand{\Expn}[1]{\color{orange}{\underline{\color{black}{\sc{E}\!xample\tx{}#1}}}}
\newcommand{\Rem}{\gudl{\sc{R}\!emark\colon}}
\newcommand{\Remn}[1]{\gudl{\sc{R}\!emark #1\colon}}
\newcommand{\brc}[1]{[\![#1]\!]}
\newcommand{\qst}{{}^{\color{red}{[?]}}}
\newcommand{\qstn}[1]{{}^{\color{red}{[?,#1]}}}
\newcommand{\sto}{\overset{\sim}{\to}}
\newcommand{\Ga}{\mathbb{G}_a}
\newcommand{\G}{\mathbb{G}}
\newcommand{\B}{\mathbb{B}}
\newcommand{\Gm}{\G_m}
\newcommand{\d}[1]{_{#1}}
\newcommand{\nz}{\not=0}
\newcommand{\x}{(x)}
\newcommand{\y}{(y)}
\newcommand{\r}[1]{\mid_{#1}}
\newcommand{\ij}{(i,j)}
\newcommand{\o}[1]{\operatorname{#1}}
\newcommand{\ne}{\not=\emptyset}
\newcommand{\ISLn}{\mathbb{S}\mathbb{L}_n}
\newcommand{\tfae}{\textbf{T.F.A.E.}}
\newcommand{\ndownlong}[2]{#1\ -\!\!\!\rightharpoonup\!\leftharpoondown\!\to\! #2}
\newcommand{\OC}{\c{O}_C}
\newcommand{\OF}{\c{O}_F}
\newcommand{\gsp}[1]{\udl{\Spec}_S(#1)}
\newcommand{\shso}{\udl{\text{Sheaves on}}}
\newcommand{\shs}{\udl{\text{Sheaves}}}
\newcommand{\ush}[1]{\udl{\text{Sheaf}}(#1)}
\newcommand{\sh}{\udl{\text{Sheaf}}}
\newcommand{\rr}{/\!\!/}
\newcommand{\EE}{\mathscr{E}}
\newcommand{\V}{\mathbb{V}}
\newcommand{\ddd}{(d,d_1,d_2)}
\newcommand{\Vd}{V_{d,d_1,d_2}}
\newcommand{\xy}{(x,y)}
\newcommand{\OX}{\c{O}_X}
\newcommand{\Ox}{\c{O}_{X,x}}
\newcommand{\KK}{\mathbb{K}}
\newcommand{\lims}{\limsup_{n\to \infty}}
\newcommand{\proof}{\gudl{\mathscr{P}\!roof}\colon}
\newcommand{\proofofprop}[1]{\underline{\color{orange}{\mathscr{P}\!roof\tx{}of\tx{}\sc{P}\!roposition\tx{}#1}\colon}}
\newcommand{\proofofcor}[1]{\underline{\color{orange}{\mathscr{P}\!roof\tx{}of\tx{}\sc{C}\!orollary\tx{}#1}\colon}}
\newcommand{\proofofthm}{\gudl{\sc{P}\!roof\tx{}of\tx{}\sc{T}\!heorem\colon}}
\newcommand{\proofofthmn}[1]{\gudl{\sc{P}\!roof\tx{}of\tx{}\sc{T}\!heorem\tx{}#1\colon}}
\newcommand{\Bew}{\underline{\color{orange}{\mathscr{B}\!eweis}\colon}}
\newcommand{\defeq}{\overset{\mathscr{D}\mathscr{e}\mathscr{f}.}{=\!=}}
\newcommand{\set}[2]{\{#1\mid #2\}}
\newcommand{\SS}{\mathscr{S}}
\newcommand{\FF}{\mathscr{F}}
\newcommand{\DD}{\mathscr{D}}
\newcommand{\dyadksum}[1]{\sum_{I\in \DD_k,I\sube J}#1}
\newcommand{\noem}{\not=\emptyset}
\newcommand{\DD}{\c{D}}
\newcommand{\BB}{\mathscr{B}}
\newcommand{\Pr}{\ff{P}}
\newcommand{\exact}[3]{0\to #1\to #2\to#3\to 0}
\newcommand{\qed}{\gudl{\ff{Q}.\ff{E}.\ff{D}.}}
\newcommand{\wt}[1]{\widetilde{#1}}
\newcommand{\wh}[1]{\widehat{#1}}
\newcommand{\spr}[1]{\Sper(#1)}
\newcommand{\LL}{\mathscr{L}}
\newcommand{\sp}[1]{\Spec(#1)}
\newcommand{\nuplong}[2]{#1\ -\!\!\!\rightharpoondown\!\leftharpoonup\!\to\! #2}
\newcommand{\ndownloong}[2]{#1 -\!\!\!-\!\!\!\rightharpoonup\!\leftharpoondown\!\!\!\longrightarrow \!#2}
\newcommand{\bop}{\bigoplus}
\newcommand{\eps}{\epsilon}
\newcommand{\K}{\mathbb{K}}
\newcommand{\lxen}{\langle x_1\cos x_n\rangle}
\newcommand{\Xen}{[X_1\cos X_n]}
\newcommand{\xen}{[x_1\cos x_n]}
\newcommand{\ip}{\langle -,- \rangle}
\newcommand{\ipr}[2]{\langle #1,#2 \rangle}
\newcommand{\vth}{\vartheta}
\newcommand{\pprod}{\prod_{v\in\ff{M}_\K}}
\newcommand{\pfam}[1]{(#1)_{v\in\ff{M}_\K}}
\newcommand{\finfam}[1]{(#1)_{i=1}^n}
\newcommand{\fam}[1]{(#1)_{i\in I}}
\newcommand{\jfam}[1]{(#1)_{j\in J}}
\newcommand{\kfam}[1]{(#1)_{k\in K}}
\newcommand{\nfam}[1]{(#1)_{i=1}^n}
\newcommand{\nifam}[1]{(#1)_{n=0}^\infty}
\newcommand{\udl}[1]{\underline{#1}}
\newcommand{\Uij}{U_i\cap U_j}
\newcommand{\vpi}{\varphi_i}
\newcommand{\vpj}{\varphi_j}
\newcommand{\vph}{\varphi}
\newcommand{\psij}{\psi_{i,j}}
\newcommand{\CC}{\c{C}}
\newcommand{\nsum}{\sum_{n\in\N}}
\newcommand{\twist}[1]{\c{O}_{\mathbb{P}_k^n}(#1)}
\newcommand{\prj}[1]{\Proj (#1)}
\newcommand{\part}[2]{\frac{\partial #1}{\partial #2}}
\newcommand{\kxn}{k[x_0,\pts,x_n]}
\newcommand{\ques}{\gudl{\c{Q}\!uestion\colon}}
\newcommand{\quesn}[1]{\gudl{\c{Q}\!uestion\tx{}#1\colon}}
\newcommand{\answ}{\gudl{\sc{A}\!nswer\colon}}
\newcommand{\cons}{\color{orange}{\udl{\color{black}{\sc{C}\!onsiderations:}}}}
\newcommand{\ka}{\kappa}
\newcommand{\pr}{\mathfrak{p}}
\newcommand{\abs}[1]{\left| #1\right|}
\newcommand{\ab}{\left|-\right|}
\newcommand{\eps}{\epsilon}
\newcommand{\N}{\mathbb{N}}
\newcommand{\KX}{K[X]}
\newcommand{\cov}{\c{U}}
\newcommand{\ff}[1]{\mathfrak{#1}}
\newcommand{\legendre}[2]{\left(\frac{#1}{#2}\right)}
\newcommand{\half}{\frac{1}{2}}
\newcommand{\ANF}{K/\Q}
\newcommand{\GFF}{F/{\F_p(t)}}
\newcommand{\Os}{\mathcal{O}_{S,s}}
\newcommand{\lineb}{\sc{L}}
\newcommand{\cyclm}{\Q(\sqrt[m]{1})}
\newcommand{\cyclmK}{K(\sqrt[m]{1})}
\newcommand{\LX}{L[X]}
\newcommand{\GG}{\sc{G}}
\newcommand{\OS}{\mathcal{O}_S}
\newcommand{\bb}[1]{\textbf{#1}}
\newcommand{\OY}{\mathcal{O}_Y}
\newcommand{\vdp}{\sc{V}\!an\text{ }der\text{ }\sc{P}\!ut}
\newcommand{\weierstr***}{\sc{W}\!eierstraß}
\newcommand{\runge}{\sc{R}\!unge}
\newcommand{\laurent}{\sc{L}\!aurent}
\newcommand{\grothendieck}{\sc{G}\!rothendieck}
\newcommand{\noether}{\sc{N}\!oether}
\newcommand{\glX}{\Gamma(X,\mathcal{O}_X)}
\newcommand{\glY}{\Gamma(Y,\mathcal{O}_Y)}
\newcommand{\finKX}{f\in K[X]}
\newcommand{\ser}[1]{\sm{n=0}{\infty}{#1}}
\newcommand{\sm}[3]{\underset{#1}{\overset{#2}{\sum}} #3}
\newcommand{\cl}[1]{\overline{#1}}
\newcommand{\sube}{\subseteq}
\newcommand{\hk}{\hookrightarrow}
\newcommand{\OYy}{\mathcal{O}_{Y,y}}
\newcommand{\supe}{\supseteq}
\newcommand{\resy}{\kappa(y)}
\newcommand{\LK}{L/K}
\newcommand{\iso}{\overset{\sim}{\to}}
\newcommand{\isom}[3]{#1\overset{#2}{\iso}#3}
\newcommand{\kn}{k^n}
\newcommand{\kvec}{\textbf{vect}(k)}
\newcommand{\fkvec}{\textbf{vect}_{<\infty}(k)}
\newcommand{\fz}{f(X)=0}
\newcommand{\KIsom}{L\underset{K}{\overset{\sim}{\to}} L}
\newcommand{\Q}{\mathbb{Q}}
\newcommand{\R}{\mathbb{R}}
\newcommand{\L}{\mathbb{L}}
\newcommand{\C}{\mathbb{C}}
\newcommand{\F}{\mathbb{F}}
\newcommand{\A}{\mathbb{A}}
\newcommand{\ad}{\A_k}
\newcommand{\P}{\mathbb{P}}
\newcommand{\Z}{\mathbb{Z}}
\newcommand{\Zp}{\mathbb{Z}_p}
\newcommand{\Qp}{\mathbb{Q}_p}
\newcommand{\Qq}{\mathbb{Q}_q}
\newcommand{\Fp}{\mathbb{F}_p}
\newcommand{\I}{[0,1]}
\newcommand{\In}{[0,1]^n}
\newcommand{\Fpn}{\mathbb{F}_{p^n}}
\newcommand{\Fpm}{\mathbb{F}_{p^m}}
\newcommand{\Zn}{\mathbb{Z}/{n\mathbb{Z}}}
\newcommand{\Zx}[1]{\mathbb{Z}/{#1\mathbb{Z}}}
\newcommand{\md}[3]{#1\equiv #2\pmod{#3}}
\newcommand{\ga}{\Gal(L/K)}
\newcommand{\aga}[1]{\Gal(\overline{#1}/#1)}
\newcommand{\sga}[1]{\Gal(#1^{sep}/{#1})}
\newcommand{\gal}[2]{\Gal(#1/{#2})}
\newcommand{\c}[1]{\mathcal{#1}}
\newcommand{\skw}{\{\tau\}}
\newcommand{\limes}[1]{\underset{i\in I}{\varprojlim{#1_i}}}
\newcommand{\IGLn}{\mathbb{G}\mathbb{L}_n}
\newcommand{\IGL}{\mathbb{G}\mathbb{L}}
\newcommand{\Co}[2]{H^p(#1,#2)}
\newcommand{\OK}{\mathcal{O}_K}
\newcommand{\OL}{\mathcal{O}_L}
\newcommand{\res}[1]{\kappa(#1)}
\newcommand{\resx}{\kappa(x)}
\newcommand{\lTen}{\langle T_1\cos T_n\rangle}
\newcommand{\lXen}{\langle X_1\cos X_n\rangle}
\newcommand{\Te}{[T]}
\newcommand{\Tee}{[T_1,T_2]}
\newcommand{\Teee}{[T_1,T_2,T_3]}
\newcommand{\Ten}{[T_1\cos T_n]}
\newcommand{\Tem}{[T_1\cos T_m]}
\newcommand{\pts}{\cdots}
\newcommand{\pt}{\cdot}
\newcommand{\hm}[3]{\Hom_{#1}(#2,#3)}
\newcommand{\hom}{\Hom}
\newcommand{\dash}{\dashrightarrow}
\newcommand{\schemes}{\bb{(Sch)}}
\newcommand{\groups}{\bb{(Grp)}}
\newcommand{\rings}{\bb{(Ring)}}
\newcommand{\tx}[1]{\text{ #1 }}
\newcommand{\mm}{\ff{m}}
\newcommand{\zkinfsum}{\sum_{k=0}^\infty}
\newcommand{\ziinfsum}{\sum_{i=0}^\infty}
\newcommand{\zjinfsum}{\sum_{j=0}^\infty}
\newcommand{\asum}[1]{\sum_{\a\in\N^n}#1 X^\a}
\newcommand{\arr}[3]{#1\overset{#2}{\to} #3}
\newcommand{\nrm}[1]{\left\|#1\right\|}
\newcommand{\nr}{\nrm{-}}
\newcommand{\ext}[2]{#1/{#2}}
\newcommand{\lam}{\lambda}
\newcommand{\a}{\alpha}
\newcommand{\be}{\beta}
\newcommand{\g}{\gamma}
\newcommand{\de}{\delta}
\newcommand{\vp}{\varphi}
\newcommand{\p}{\phi}
\newcommand{\bul}{\bullet}
\newcommand{\t}{\tau}
\newcommand{\s}{\sigma}
\newcommand{\ze}{\zeta}
\newcommand{\T}{\mathbb{T}}
\newcommand{\tm}{\times}
\newcommand{\tms}{\times\pts\times}
\newcommand{\ot}{\otimes}
\newcommand{\ots}{\otimes\pts\otimes}
\newcommand{\pls}{+\pts +}
\newcommand{\cos}{,\pts,}
\newcommand{\op}{\oplus}
\newcommand{\ops}{\oplus\pts\oplus}
\newcommand{\cr}{\circ}
\newcommand{\crs}{\circ\pts\circ}
\newcommand{\sc}[1]{\mathscr{#1}}
\newcommand{\scal}[2]{\sc{#1}{\!#2}}
\newcommand{\ov}[2]{\begin{matrix}#1 \\ #2\end{matrix}}
\newcommand{\viele}{\color{orange}{\udl{\color{black}{\sc{V}\!iele\tx{}\sc{G}\!r\overset{{}_{,,\!}}{u}\textit{ß}e}}}}
\newcommand{\xst}{\color{orange}{\udl{\color{black}{X.S.T.\sim 小石头}}}}
\newcommand{\gudl}[1]{\color{orange}{\udl{\color{black}{#1}}}}
\newcommand{\Task}{\gudl{\sc{T}\!ask:}}
\newcommand{\Exer}{\gudl{\sc{E}\!exercise:}}
\newcommand{\Drinfeld}{\gudl{\sc{D}\!rinfeld:}}
\newcommand{\Goss}{\gudl{\sc{G}\!oss}}
\newcommand{\CK}{C/K}
\newcommand{\CS}{C/S}
\newcommand{\Ck}{C/k}
\newcommand{\Om}{\Omega}
\newcommand{\J}{\Jac_{\CS}^{g-1}}
\newcommand{\Fact}{\gudl{\sc{F}\!act\colon}}
\newcommand{\Factn}[1]{\gudl{\sc{F}\!act\tx{}#1\colon}}\)
Beweise oder widerlege:
a) $f: \IC-\{0\} \rightarrow \IC-\{1\}, z \mapsto z^9+1$ lässt sich zu einer Abbildung $f: \IC \rightarrow \IC-\{1\}$ erweitern.
b) $f: \IC-\{0\} \rightarrow \IC-\{1\}, z \mapsto z^9+1$ lässt sich zu einer Abbildung \(f: \IC \rightarrow \IC\) erweitern.
---
Ich bin mir nicht sicher ob ich die Aufgabe (Fach ist Topologie) überhaupt richtig verstehe. Ich schätze, die erweiterte Abbildung soll stetig sein, sonst könnte man ja ein beliebiges Bild wählen. Das bedeutet in a) sollen wir ein Bild für \(0\) in \(\IC-\{1\}\) finden, sodass die erweiterte Abbildung stetig ist?
Ich verstehe nicht wie das gehen soll. Für $z \rightarrow 0$ gilt $f(z) \rightarrow 1$, damit man ein Bild für $0$ ungleich $1$ findet und die Abbildung dennoch stetig ist, müsste man die Abbildung verändern um einen Epsilon Ball um $0$. Aber das ist doch nicht erlaubt?
Und b) verstehe ich vermutlich auch falsch. Soll die Abbildung surjektiv sein? Denn sonst ist die Antwort von a) doch auch bereits die Antwort für b).\(\endgroup\)
|
Profil
|
zippy
Senior  Dabei seit: 24.10.2018 Mitteilungen: 4975
 | Beitrag No.1, eingetragen 2023-05-18
|
\quoteon(2023-05-18 19:19 - LukasNiessen im Themenstart)
Denn sonst ist die Antwort von a) doch auch bereits die Antwort für b).
\quoteoff
Warum? Es könnte doch sein, dass die Hinzunahme von $1$ zum Bild das Problem aus a) aus dem Weg räumt.
--zippy
|
Profil
|
ochen
Senior  Dabei seit: 09.03.2015 Mitteilungen: 3803
Wohnort: der Nähe von Schwerin
 | Beitrag No.2, eingetragen 2023-05-18
|
Hi :) Ja, ich vermute, dass deine Abbildungen stetig fortgesetzt werden sollen. Aber ein Problem gibt es doch nur bei der a) und bei der b) nicht mehr.
[Die Antwort wurde vor Beitrag No.1 begonnen.]
|
Profil
|
LukasNiessen
Wenig Aktiv  Dabei seit: 30.09.2019 Mitteilungen: 156
Wohnort: Deutschland
 | Beitrag No.3, vom Themenstarter, eingetragen 2023-05-18
|
\(\begingroup\)\(\newcommand{\defi}{\overset{\mathscr{D}\mathscr{e}\mathscr{f}.}{=\!=}}
\newcommand{\defeq}{\overset{\mathscr{D}\mathscr{e}\mathscr{f}.}{=\!=}}
\newcommand{\IN}{\mathbb{N}}
\newcommand{\IZ}{\mathbb{Z}}
\newcommand{\IQ}{\mathbb{Q}}
\newcommand{\IR}{\mathbb{R}}
\newcommand{\IC}{\mathbb{C}}
\DeclareMathOperator{\mer}{mer}
\DeclareMathOperator{\Sht}{Sht}
\DeclareMathOperator{\Ann}{Ann}
\DeclareMathOperator{\Et}{\acute{E}t}
\DeclareMathOperator{\et}{\acute{e}t}
\newcommand{\h}{\o{h}}
\DeclareMathOperator{\ind}{ind}
\DeclareMathOperator{\etale}{\acute{e}tale}
\DeclareMathOperator{\Coker}{Coker}
\DeclareMathOperator{\Div}{Div}
\DeclareMathOperator{\Gl}{GL}
\DeclareMathOperator{\PGL}{PGL}
\DeclareMathOperator{\dom}{dom}
\DeclareMathOperator{\PSL}{PSL}
\DeclareMathOperator{\SL}{SL}
\DeclareMathOperator{\Res}{Res}
\DeclareMathOperator{\equi}{equi}
\DeclareMathOperator{\Hecke}{Hecke}
\DeclareMathOperator{\Aut}{Aut}
\DeclareMathOperator{\Jac}{Jac}
\DeclareMathOperator{\GL}{GL}
\DeclareMathOperator{\HF}{HF}
\DeclareMathOperator{\HS}{HS}
\DeclareMathOperator{\Ker}{Ker}
\DeclareMathOperator{\trdeg}{trdeg}
\DeclareMathOperator{\mod}{mod}
\DeclareMathOperator{\codim}{codim}
\DeclareMathOperator{\log}{log}
\DeclareMathOperator{\Log}{Log}
\DeclareMathOperator{\Nm}{Nm}
\DeclareMathOperator{\Con}{Con}
\DeclareMathOperator{\coker}{coker}
\DeclareMathOperator{\Ob}{Ob}
\DeclareMathOperator{\Emb}{Emb}
\DeclareMathOperator{\Tr}{Tr}
\DeclareMathOperator{\Sym}{Sym}
\DeclareMathOperator{\scale}{scale}
\DeclareMathOperator{\Sper}{Sper}
\DeclareMathOperator{\Sp}{Sp}
\DeclareMathOperator{\vol}{vol}
\DeclareMathOperator{\Cl}{Cl}
\DeclareMathOperator{\Ét}{Ét}
\DeclareMathOperator{\lcm}{lcm}
\DeclareMathOperator{\ord}{ord}
\DeclareMathOperator{\End}{End}
\DeclareMathOperator{\supp}{supp}
\DeclareMathOperator{\rad}{rad}
\DeclareMathOperator{\lim}{lim}
\DeclareMathOperator{\char}{char}
\DeclareMathOperator{\Proj}{Proj}
\DeclareMathOperator{\proj}{proj}
\DeclareMathOperator{\length}{length}
\DeclareMathOperator{\locArt}{locArt}
\DeclareMathOperator{\***}{***}
\DeclareMathOperator{\id}{id}
\DeclareMathOperator{\im}{im}
\DeclareMathOperator{\Pic}{Pic}
\DeclareMathOperator{\Spec}{Spec}
\DeclareMathOperator{\Gal}{Gal}
\DeclareMathOperator{\Hom}{Hom}
\DeclareMathOperator{\ker}{ker}
\DeclareMathOperator{\ht}{ht}
\DeclareMathOperator{\Frob}{Frob}
\DeclareMathOperator{\Frac}{Frac}
\DeclareMathOperator{\det}{det}
\newcommand{\AA}{\sc{A}}
\newcommand{\Rem}{\gudl{\sc{R}\!emark}}
\newcommand{\Def}{\color{orange}{\underline{\color{black}{\sc{D}\!efinition}}}}
\newcommand{\Defn}[1]{\color{orange}{\underline{\color{black}{\sc{D}\!efinition\tx{}#1}}}}
\newcommand{\Prop}{\color{orange}{\underline{\color{black}{\sc{P}\!roposition}}}}
\newcommand{\Propn}[1]{\color{orange}{\underline{\color{black}{\sc{P}\!roposition\tx{}#1}}}}
\newcommand{\Claim}{\gudl{\sc{C}\!laim\colon}}
\newcommand{\Claimn}[1]{\gudl{\sc{C}\!laim \tx{}#1}}
\newcommand{\Thm}{\color{orange}{\underline{\color{black}{\sc{T}\!heorem}}}}
\newcommand{\Thmn}[1]{\gudl{\sc{T}\!heorem\tx{}#1}}
\newcommand{\O}{\c{O}}
\DeclareMathOperator{\Ouv}{Ouv}
\newcommand{\Cor}{\color{orange}{\underline{\color{black}{\sc{C}\!orollary}}}}
\newcommand{\Corn}[1]{\color{orange}{\underline{\color{black}{\sc{C}\!orollary\tx{}#1}}}}
\newcommand{\Fct}{\color{orange}{\underline{\color{black}{\sc{F}\!act}}}}
\newcommand{\Fctn}[1]{\color{orange}{\underline{\color{black}{\sc{F}\!act\tx{}#1}}}}
\newcommand{\Lem}{\color{orange}{\underline{\color{black}{\sc{L}\!emma}}}}
\newcommand{\Lemn}[1]{\color{orange}{\underline{\color{black}{\sc{L}\!emma\tx{}#1}}}}
\newcommand{\Exp}{\color{orange}{\underline{\color{black}{\sc{E}\!xample}}}}
\newcommand{\Expn}[1]{\color{orange}{\underline{\color{black}{\sc{E}\!xample\tx{}#1}}}}
\newcommand{\Rem}{\gudl{\sc{R}\!emark\colon}}
\newcommand{\Remn}[1]{\gudl{\sc{R}\!emark #1\colon}}
\newcommand{\brc}[1]{[\![#1]\!]}
\newcommand{\qst}{{}^{\color{red}{[?]}}}
\newcommand{\qstn}[1]{{}^{\color{red}{[?,#1]}}}
\newcommand{\sto}{\overset{\sim}{\to}}
\newcommand{\Ga}{\mathbb{G}_a}
\newcommand{\G}{\mathbb{G}}
\newcommand{\B}{\mathbb{B}}
\newcommand{\Gm}{\G_m}
\newcommand{\d}[1]{_{#1}}
\newcommand{\nz}{\not=0}
\newcommand{\x}{(x)}
\newcommand{\y}{(y)}
\newcommand{\r}[1]{\mid_{#1}}
\newcommand{\ij}{(i,j)}
\newcommand{\o}[1]{\operatorname{#1}}
\newcommand{\ne}{\not=\emptyset}
\newcommand{\ISLn}{\mathbb{S}\mathbb{L}_n}
\newcommand{\tfae}{\textbf{T.F.A.E.}}
\newcommand{\ndownlong}[2]{#1\ -\!\!\!\rightharpoonup\!\leftharpoondown\!\to\! #2}
\newcommand{\OC}{\c{O}_C}
\newcommand{\OF}{\c{O}_F}
\newcommand{\gsp}[1]{\udl{\Spec}_S(#1)}
\newcommand{\shso}{\udl{\text{Sheaves on}}}
\newcommand{\shs}{\udl{\text{Sheaves}}}
\newcommand{\ush}[1]{\udl{\text{Sheaf}}(#1)}
\newcommand{\sh}{\udl{\text{Sheaf}}}
\newcommand{\rr}{/\!\!/}
\newcommand{\EE}{\mathscr{E}}
\newcommand{\V}{\mathbb{V}}
\newcommand{\ddd}{(d,d_1,d_2)}
\newcommand{\Vd}{V_{d,d_1,d_2}}
\newcommand{\xy}{(x,y)}
\newcommand{\OX}{\c{O}_X}
\newcommand{\Ox}{\c{O}_{X,x}}
\newcommand{\KK}{\mathbb{K}}
\newcommand{\lims}{\limsup_{n\to \infty}}
\newcommand{\proof}{\gudl{\mathscr{P}\!roof}\colon}
\newcommand{\proofofprop}[1]{\underline{\color{orange}{\mathscr{P}\!roof\tx{}of\tx{}\sc{P}\!roposition\tx{}#1}\colon}}
\newcommand{\proofofcor}[1]{\underline{\color{orange}{\mathscr{P}\!roof\tx{}of\tx{}\sc{C}\!orollary\tx{}#1}\colon}}
\newcommand{\proofofthm}{\gudl{\sc{P}\!roof\tx{}of\tx{}\sc{T}\!heorem\colon}}
\newcommand{\proofofthmn}[1]{\gudl{\sc{P}\!roof\tx{}of\tx{}\sc{T}\!heorem\tx{}#1\colon}}
\newcommand{\Bew}{\underline{\color{orange}{\mathscr{B}\!eweis}\colon}}
\newcommand{\defeq}{\overset{\mathscr{D}\mathscr{e}\mathscr{f}.}{=\!=}}
\newcommand{\set}[2]{\{#1\mid #2\}}
\newcommand{\SS}{\mathscr{S}}
\newcommand{\FF}{\mathscr{F}}
\newcommand{\DD}{\mathscr{D}}
\newcommand{\dyadksum}[1]{\sum_{I\in \DD_k,I\sube J}#1}
\newcommand{\noem}{\not=\emptyset}
\newcommand{\DD}{\c{D}}
\newcommand{\BB}{\mathscr{B}}
\newcommand{\Pr}{\ff{P}}
\newcommand{\exact}[3]{0\to #1\to #2\to#3\to 0}
\newcommand{\qed}{\gudl{\ff{Q}.\ff{E}.\ff{D}.}}
\newcommand{\wt}[1]{\widetilde{#1}}
\newcommand{\wh}[1]{\widehat{#1}}
\newcommand{\spr}[1]{\Sper(#1)}
\newcommand{\LL}{\mathscr{L}}
\newcommand{\sp}[1]{\Spec(#1)}
\newcommand{\nuplong}[2]{#1\ -\!\!\!\rightharpoondown\!\leftharpoonup\!\to\! #2}
\newcommand{\ndownloong}[2]{#1 -\!\!\!-\!\!\!\rightharpoonup\!\leftharpoondown\!\!\!\longrightarrow \!#2}
\newcommand{\bop}{\bigoplus}
\newcommand{\eps}{\epsilon}
\newcommand{\K}{\mathbb{K}}
\newcommand{\lxen}{\langle x_1\cos x_n\rangle}
\newcommand{\Xen}{[X_1\cos X_n]}
\newcommand{\xen}{[x_1\cos x_n]}
\newcommand{\ip}{\langle -,- \rangle}
\newcommand{\ipr}[2]{\langle #1,#2 \rangle}
\newcommand{\vth}{\vartheta}
\newcommand{\pprod}{\prod_{v\in\ff{M}_\K}}
\newcommand{\pfam}[1]{(#1)_{v\in\ff{M}_\K}}
\newcommand{\finfam}[1]{(#1)_{i=1}^n}
\newcommand{\fam}[1]{(#1)_{i\in I}}
\newcommand{\jfam}[1]{(#1)_{j\in J}}
\newcommand{\kfam}[1]{(#1)_{k\in K}}
\newcommand{\nfam}[1]{(#1)_{i=1}^n}
\newcommand{\nifam}[1]{(#1)_{n=0}^\infty}
\newcommand{\udl}[1]{\underline{#1}}
\newcommand{\Uij}{U_i\cap U_j}
\newcommand{\vpi}{\varphi_i}
\newcommand{\vpj}{\varphi_j}
\newcommand{\vph}{\varphi}
\newcommand{\psij}{\psi_{i,j}}
\newcommand{\CC}{\c{C}}
\newcommand{\nsum}{\sum_{n\in\N}}
\newcommand{\twist}[1]{\c{O}_{\mathbb{P}_k^n}(#1)}
\newcommand{\prj}[1]{\Proj (#1)}
\newcommand{\part}[2]{\frac{\partial #1}{\partial #2}}
\newcommand{\kxn}{k[x_0,\pts,x_n]}
\newcommand{\ques}{\gudl{\c{Q}\!uestion\colon}}
\newcommand{\quesn}[1]{\gudl{\c{Q}\!uestion\tx{}#1\colon}}
\newcommand{\answ}{\gudl{\sc{A}\!nswer\colon}}
\newcommand{\cons}{\color{orange}{\udl{\color{black}{\sc{C}\!onsiderations:}}}}
\newcommand{\ka}{\kappa}
\newcommand{\pr}{\mathfrak{p}}
\newcommand{\abs}[1]{\left| #1\right|}
\newcommand{\ab}{\left|-\right|}
\newcommand{\eps}{\epsilon}
\newcommand{\N}{\mathbb{N}}
\newcommand{\KX}{K[X]}
\newcommand{\cov}{\c{U}}
\newcommand{\ff}[1]{\mathfrak{#1}}
\newcommand{\legendre}[2]{\left(\frac{#1}{#2}\right)}
\newcommand{\half}{\frac{1}{2}}
\newcommand{\ANF}{K/\Q}
\newcommand{\GFF}{F/{\F_p(t)}}
\newcommand{\Os}{\mathcal{O}_{S,s}}
\newcommand{\lineb}{\sc{L}}
\newcommand{\cyclm}{\Q(\sqrt[m]{1})}
\newcommand{\cyclmK}{K(\sqrt[m]{1})}
\newcommand{\LX}{L[X]}
\newcommand{\GG}{\sc{G}}
\newcommand{\OS}{\mathcal{O}_S}
\newcommand{\bb}[1]{\textbf{#1}}
\newcommand{\OY}{\mathcal{O}_Y}
\newcommand{\vdp}{\sc{V}\!an\text{ }der\text{ }\sc{P}\!ut}
\newcommand{\weierstr***}{\sc{W}\!eierstraß}
\newcommand{\runge}{\sc{R}\!unge}
\newcommand{\laurent}{\sc{L}\!aurent}
\newcommand{\grothendieck}{\sc{G}\!rothendieck}
\newcommand{\noether}{\sc{N}\!oether}
\newcommand{\glX}{\Gamma(X,\mathcal{O}_X)}
\newcommand{\glY}{\Gamma(Y,\mathcal{O}_Y)}
\newcommand{\finKX}{f\in K[X]}
\newcommand{\ser}[1]{\sm{n=0}{\infty}{#1}}
\newcommand{\sm}[3]{\underset{#1}{\overset{#2}{\sum}} #3}
\newcommand{\cl}[1]{\overline{#1}}
\newcommand{\sube}{\subseteq}
\newcommand{\hk}{\hookrightarrow}
\newcommand{\OYy}{\mathcal{O}_{Y,y}}
\newcommand{\supe}{\supseteq}
\newcommand{\resy}{\kappa(y)}
\newcommand{\LK}{L/K}
\newcommand{\iso}{\overset{\sim}{\to}}
\newcommand{\isom}[3]{#1\overset{#2}{\iso}#3}
\newcommand{\kn}{k^n}
\newcommand{\kvec}{\textbf{vect}(k)}
\newcommand{\fkvec}{\textbf{vect}_{<\infty}(k)}
\newcommand{\fz}{f(X)=0}
\newcommand{\KIsom}{L\underset{K}{\overset{\sim}{\to}} L}
\newcommand{\Q}{\mathbb{Q}}
\newcommand{\R}{\mathbb{R}}
\newcommand{\L}{\mathbb{L}}
\newcommand{\C}{\mathbb{C}}
\newcommand{\F}{\mathbb{F}}
\newcommand{\A}{\mathbb{A}}
\newcommand{\ad}{\A_k}
\newcommand{\P}{\mathbb{P}}
\newcommand{\Z}{\mathbb{Z}}
\newcommand{\Zp}{\mathbb{Z}_p}
\newcommand{\Qp}{\mathbb{Q}_p}
\newcommand{\Qq}{\mathbb{Q}_q}
\newcommand{\Fp}{\mathbb{F}_p}
\newcommand{\I}{[0,1]}
\newcommand{\In}{[0,1]^n}
\newcommand{\Fpn}{\mathbb{F}_{p^n}}
\newcommand{\Fpm}{\mathbb{F}_{p^m}}
\newcommand{\Zn}{\mathbb{Z}/{n\mathbb{Z}}}
\newcommand{\Zx}[1]{\mathbb{Z}/{#1\mathbb{Z}}}
\newcommand{\md}[3]{#1\equiv #2\pmod{#3}}
\newcommand{\ga}{\Gal(L/K)}
\newcommand{\aga}[1]{\Gal(\overline{#1}/#1)}
\newcommand{\sga}[1]{\Gal(#1^{sep}/{#1})}
\newcommand{\gal}[2]{\Gal(#1/{#2})}
\newcommand{\c}[1]{\mathcal{#1}}
\newcommand{\skw}{\{\tau\}}
\newcommand{\limes}[1]{\underset{i\in I}{\varprojlim{#1_i}}}
\newcommand{\IGLn}{\mathbb{G}\mathbb{L}_n}
\newcommand{\IGL}{\mathbb{G}\mathbb{L}}
\newcommand{\Co}[2]{H^p(#1,#2)}
\newcommand{\OK}{\mathcal{O}_K}
\newcommand{\OL}{\mathcal{O}_L}
\newcommand{\res}[1]{\kappa(#1)}
\newcommand{\resx}{\kappa(x)}
\newcommand{\lTen}{\langle T_1\cos T_n\rangle}
\newcommand{\lXen}{\langle X_1\cos X_n\rangle}
\newcommand{\Te}{[T]}
\newcommand{\Tee}{[T_1,T_2]}
\newcommand{\Teee}{[T_1,T_2,T_3]}
\newcommand{\Ten}{[T_1\cos T_n]}
\newcommand{\Tem}{[T_1\cos T_m]}
\newcommand{\pts}{\cdots}
\newcommand{\pt}{\cdot}
\newcommand{\hm}[3]{\Hom_{#1}(#2,#3)}
\newcommand{\hom}{\Hom}
\newcommand{\dash}{\dashrightarrow}
\newcommand{\schemes}{\bb{(Sch)}}
\newcommand{\groups}{\bb{(Grp)}}
\newcommand{\rings}{\bb{(Ring)}}
\newcommand{\tx}[1]{\text{ #1 }}
\newcommand{\mm}{\ff{m}}
\newcommand{\zkinfsum}{\sum_{k=0}^\infty}
\newcommand{\ziinfsum}{\sum_{i=0}^\infty}
\newcommand{\zjinfsum}{\sum_{j=0}^\infty}
\newcommand{\asum}[1]{\sum_{\a\in\N^n}#1 X^\a}
\newcommand{\arr}[3]{#1\overset{#2}{\to} #3}
\newcommand{\nrm}[1]{\left\|#1\right\|}
\newcommand{\nr}{\nrm{-}}
\newcommand{\ext}[2]{#1/{#2}}
\newcommand{\lam}{\lambda}
\newcommand{\a}{\alpha}
\newcommand{\be}{\beta}
\newcommand{\g}{\gamma}
\newcommand{\de}{\delta}
\newcommand{\vp}{\varphi}
\newcommand{\p}{\phi}
\newcommand{\bul}{\bullet}
\newcommand{\t}{\tau}
\newcommand{\s}{\sigma}
\newcommand{\ze}{\zeta}
\newcommand{\T}{\mathbb{T}}
\newcommand{\tm}{\times}
\newcommand{\tms}{\times\pts\times}
\newcommand{\ot}{\otimes}
\newcommand{\ots}{\otimes\pts\otimes}
\newcommand{\pls}{+\pts +}
\newcommand{\cos}{,\pts,}
\newcommand{\op}{\oplus}
\newcommand{\ops}{\oplus\pts\oplus}
\newcommand{\cr}{\circ}
\newcommand{\crs}{\circ\pts\circ}
\newcommand{\sc}[1]{\mathscr{#1}}
\newcommand{\scal}[2]{\sc{#1}{\!#2}}
\newcommand{\ov}[2]{\begin{matrix}#1 \\ #2\end{matrix}}
\newcommand{\viele}{\color{orange}{\udl{\color{black}{\sc{V}\!iele\tx{}\sc{G}\!r\overset{{}_{,,\!}}{u}\textit{ß}e}}}}
\newcommand{\xst}{\color{orange}{\udl{\color{black}{X.S.T.\sim 小石头}}}}
\newcommand{\gudl}[1]{\color{orange}{\udl{\color{black}{#1}}}}
\newcommand{\Task}{\gudl{\sc{T}\!ask:}}
\newcommand{\Exer}{\gudl{\sc{E}\!exercise:}}
\newcommand{\Drinfeld}{\gudl{\sc{D}\!rinfeld:}}
\newcommand{\Goss}{\gudl{\sc{G}\!oss}}
\newcommand{\CK}{C/K}
\newcommand{\CS}{C/S}
\newcommand{\Ck}{C/k}
\newcommand{\Om}{\Omega}
\newcommand{\J}{\Jac_{\CS}^{g-1}}
\newcommand{\Fact}{\gudl{\sc{F}\!act\colon}}
\newcommand{\Factn}[1]{\gudl{\sc{F}\!act\tx{}#1\colon}}\)
Ja, tatsächlich, ich habe das total übersehen, danke Zippy. Also die Antwort auf b) ist trivial: Setze $f(0)=1$. Das ist stetig.
Und a) würde ich wie folgt beantworten: Das ist nicht möglich, denn $f(z) \rightarrow 1$ für $z \rightarrow 0$. Stetigkeit kann also nicht gegeben sein.
---
Aber hier muss doch irgendwas falsch sein. Das ist viel zu einfach und das hat auch nichts mit der Theorie von unserer Vorlesung Einführung in die Geometrie und Topologie zu tun. \(\endgroup\)
|
Profil
| Folgende Antworten hat der Fragensteller vermutlich noch nicht gesehen. Er/sie war noch nicht wieder auf dem Matheplaneten |
Kezer
Senior  Dabei seit: 04.10.2013 Mitteilungen: 1862
 | Beitrag No.4, eingetragen 2023-05-27
|
Hi,
ich bin ein Tutor in der Vorlesung, in der diese Aufgabe gestellt wurde und mir war auch nicht völlig klar, warum diese Aufgabe gestellt wurde.
Wolfgang Lück meinte, dass sie gewisse Ähnlichkeiten zu Brouwers Fixpunktsatz aufzeigt und dass es außerdem nicht unbedingt schlecht ist sehr leichte Aufgaben zu stellen („manchmal bin ich sehr nett!“), da man dann sieht, ob die Studenten wirklich handfest mit dem bisherigen Material sind. („Es ist so leicht, kann es wirklich richtig sein?“ Aber wenn man den Stoff hinreichend gut versteht, kann man sich sicher sein, dass der Beweis richtig ist.)
Viel mehr kann ich hierzu aber wahrscheinlich auch nicht sagen.
|
Profil
|
|
All logos and trademarks in this site are property of their respective owner. The comments are property of their posters, all the rest © 2001-2023 by Matroids Matheplanet
This web site was originally made with PHP-Nuke, a former web portal system written in PHP that seems no longer to be maintained nor supported. PHP-Nuke is Free Software released under the GNU/GPL license.
Ich distanziere mich von rechtswidrigen oder anstößigen Inhalten, die sich trotz aufmerksamer Prüfung hinter hier verwendeten Links verbergen mögen. Lesen Sie die
Nutzungsbedingungen,
die Distanzierung,
die Datenschutzerklärung und das Impressum.
[Seitenanfang]
|